Payments and Penalties in Ecosystem Services programs

Youngho Kim, Erik Lichtenberg, and David Newburn

University of Maryland

2022 Social Cost of Water Pollution Workshop, Washington D.C.

Payments for Ecosystem Services (PES)

- Financial incentives in return for voluntary provision of ecosystem services United States
 - Conservation (Enhancement) Reserve Program (CRP and CREP), Environmental Quality Incentives Program (EQIP), and Conservation Stewardship Program (CSP)

 \mathbf{EU}

• Agri-environmental schemes (AES)

China

• Sloping Land Conversion Program (SLCP)

Costa Rica

• Pagos por Servicios Ambientales (PSA) program

United Nations

Reducing Emissions from Deforestation and forest Degradation (REDD+)

- General features of the PES program
 - Medium- to long-term contract (5-20 years)
 - One-time upfront payment plus a series of annual payments
 - \circ Non-completion penalty: total payments received + fixed fees (e.g., CRP and CREP)

Research Objectives: Optimal Penalty Structure

- How should the government structure penalties for contract non-completion in the PES programs?
- **Theoretical analysis**: Qualitative difference between optimal and standard penalty structures
- Numerical policy simulation: Magnitudes of differences between the two penalty structures and improvements in policy outcomes

✓ Preview of findings

- Fundamentally different optimal and standard penalty structures
- Potentially large inefficiencies from coupling penalty with total payments received

Focusing on the penalty and contract performance

- Existing studies mainly focus on payments, participation, and cost-effectiveness of the PES program (Alix-Garcia & Wolff, 2014; Jack et al., 2008; Ribaudo & Shortle, 2019; Wunder et al., 2020)
 - Hidden information and additionality (Claassen et al., 2018; Fleming et al., 2018; Horowitz & Just, 2013; Lichtenberg, 2021; Lichtenberg & Smith-Ramirez, 2011; Mason & Plantinga, 2013; Mezzatesta et al., 2013; Wu & Babcock, 1996)
 - Restructure payments (Ferraro, 2008; Suter et al., 2008)
 - Auction (Hellerstein et al., 2015; Palm-Forster et al., 2016)
 - Targeting based on performance (Babcock et al., 1997; Ferraro & Simpson, 2002; Savage & Ribaudo, 2016; Talberth et al., 2015)
 - Moral hazard in participation decision (Pates & Hendricks, 2020)
 - Exceptions: contract enforcement via costly *ex post* monitoring (Fraser, 2002; Hart & Latacz-Lohmann, 2005; Lankoski et al., 2010; Peterson et al., 2015)
- $\checkmark~$ This paper focuses on participant performance
 - Non-completion penalty and contract contract completion after the initial signup

Theoretical Analysis

Policy Simulation 000

Conclusion O

Multi-period PES Contract

Figure 1: Land-use path during the contract periods

Youngho Kim (UMD)

Participation constraint of a risk-neutral farmer

• Expected program return at least as great as expected net crop return during the contract period:

Expected program return from completion

$$D_{T} \equiv \underbrace{\left(\prod_{t=0}^{T-1} F_{t}\right) \left(\sum_{t=1}^{T} \delta^{t-1} r\right)}_{L_{j+1}} \left(\prod_{t=0}^{j} \delta^{l} r + \left(\sum_{t=0}^{T-1} \delta^{q} v_{q}\right) \varepsilon_{j+1} - \delta^{j+1} (p_{j+1} + c_{j+1}) \right] f(\varepsilon_{j+1}) d\varepsilon_{j+1}}_{\text{Expected program return from pon-completion}}$$
(1)

program return from **non-com**

$$\geq \qquad \underbrace{\sum_{t=0}^{T-1} \delta^t v_t}.$$

Expected net crop return

- p_t : early-termination penalty at time t
- a: upfront payment
- k: practice installation cost
- v_t : expectation on crop return at time t
- F_t : remaining probability at time t
- δ : a discount factor

Youngho Kim (UMD)

r: annual program payment

 L_t : exit threshold level of random shock at time t

 ε_t : i.i.d random shock at time t with density $f(\cdot)$

c: practice removal cost at time t

Payments and Penalties in Ecosystem Services programs

Theoretical Analysis 00000

Policy Simulation 000

Government's Optimization Problem

• Chooses upfront payment a and penalty schedule p_t to maximize time 0 expected net program benefits (= environmental benefits – upfront payment – total annual payments + penalty revenue).

$$\max_{a,p_1,p_2,\dots,p_{T-1}} W_T \equiv \underbrace{-a}^{\text{Upfront payment}} + \underbrace{\left(\prod_{t=1}^{T-1} F_t\right) \left(\sum_{t=0}^{T-1} \delta^t(B_t - r)\right)}_{\substack{j=0}} (2) \\ + \underbrace{\sum_{j=0}^{T-2} \left\{ \left(\prod_{t=0}^{j} F_t\right) (1 - F_{j+1}) \left[\sum_{l=0}^{j} \delta^l(B_l - r) + \delta^{j+1} p_{j+1}\right] \right\}}_{\substack{j=0}},$$

Net program benefits from ${\bf non-completion}$

subject to participation constraint in equation (1).

• Assumptions

- exogenously determined r, k, and c; i.i.d. ε_t ; adjustable $a \ge 0$ and $p_t \ge 0$
- B_t , v_t , and $f(\varepsilon_t)$ known to the government at time 0

p_t : early-termination penalty at time t		$B_t\colon$ environmental benefits at time t		
a: upfront payment		r: annual program payment		
F_t : remaining probability at	time t	δ : a discount factor		
Youngho Kim (UMD)	Payments and Penalties in	Ecosystem Services programs		

Result 1. Optimal and standard penalties are qualitatively different in setting their **levels**

• Optimal penalty = future net environmental benefits lost (forward-looking)

$$p_t^* = \frac{1}{\delta^t} \left[\sum_{j=t}^{T-1} \delta^j (B_j - r) \right], \quad 1 \le t \le T - 1.$$
(3)

• Standard penalty = total program payments already paid (backward-looking)

$$p_t^0 = \frac{1}{\delta^t} \left[a^0 + \left(\sum_{j=0}^{t-1} \delta^j r \right) \right],\tag{4}$$

 $\boldsymbol{B}_t \colon$ environmental benefits at time t

r: annual program payment

 a^0 : upfront payment under the standard penalty structure

 δ : a discount factor

Youngho Kim (UMD)

Result 2. Optimal and standard penalties are qualitatively different in setting their **trends**

• **Optimal** penalty generally **decreases** over time (government's rationality condition):

$$\delta p_{it+1}^* - p_t^* = -(B_t - r) < 0.$$
(5)

• Standard penalty monotonically increases over time:

$$\delta p_{it+1}^0 - p_t^0 = r > 0. (6)$$

 B_t : environmental benefits at time t

 δ : a discount factor

r: annual program payment

Introduction 000 Theoretical Analysis 00000 Policy Simulation $\bullet 00$

Conclusion O

Policy Simulation Outline

- **Objective**: Magnitudes of differences between the two penalty schedules and improvements in net program benefits
- A representative corn farmer in the Chesapeake Bay watershed
 - Crop return v_t : \$409/acre (Maryland Crop Budget 2021)
- PES contract converts cropland to grass riparian buffer for 10 years
 - Annual payment r: \$306/acre (CREP in Maryland: USDA-FSA)
 - \circ Upfront payment a: set to ensure farmer's program participation
- Environmental benefits: reduction of nutrients and sediments runoff delivered to the watershed (\$ value)
 - $\circ\,$ Water quality benefits $B_t:$ \$519–\$820/acre (Belt et al. (2014), Choi et al. (2020), and Hairston-Strang (2005) and Chesapeake Bay Watershed Model)

Introduction 000 Theoretical Analysis 00000 Policy Simulation $0 \bullet 0$

Conclusion O

Result 3. Optimal and standard penalties are quantitatively different

Result 4. Inefficiencies from the standard penalty structure can be substantial

• Government's net program benefits (NPBs) = environmental benefits – upfront payment – total annual payments + penalty revenue

Penalty	Upfront Payment (\$/acre)	Env. Benefits (\$/acre)	Total Annual Payment (\$/acre)	Penalty Revenue (\$/acre)	NPBs (\$/acre)
Optimal	1,232	6,636	2,694	37	2,748
Standard	1,060	4,992	2,056	431	2,307
Difference	172	$1,\!644$	638	-394	441

Table 1: Government's Net Program Benefits

• 19% increase in net program benefits under the optimal penalty structure (robust under a range of parameter values)

Introduction	
000	

Policy Simulation 000

Implications for the Payments for Ecosystem Services (PES) Contract Design

1. The optimal penalty structure is **qualitatively** and **quantitatively** different from the current standard penalty structure.

2. Government may increase net environmental benefits from the PES contract substantially by **restructuring** the current standard penalty.

References I

- Alix-Garcia, J., & Wolff, H. (2014). Payment for ecosystem services from forests. Annual Review of Resource Economics, 6(1), 361–380.
- Babcock, B. A., Lakshminarayan, P. G., Wu, J., & Zilberman, D. (1997). Targeting tools for the purchase of environmental amenities. *Land economics*, 325–339.
- Belt, K., Groffman, P., Newbold, D., Hession, C., Noe, G., Okay, J., Southerland, M., Speiran, G., Staver, K., & Hairston-Strang, A. (2014). Recommendations of the Expert Panel to Reassess Removal Rates for Riparian Forest and Grass Buffers Best Management Practices.
- Choi, D. S., Ready, R. C., & Shortle, J. S. (2020). Valuing water quality benefits from adopting best management practices: A spatial approach. *Journal of Environmental Quality*, 49(3), 582–592.
- Claassen, R., Duquette, E. N., & Smith, D. J. (2018). Additionality in US agricultural conservation programs. Land Economics, 94(1), 19–35.
- Ferraro, P. J. (2008). Asymmetric information and contract design for payments for environmental services. *Ecological economics*, 65(4), 810–821.
- Ferraro, P. J., & Simpson, R. D. (2002). The cost-effectiveness of conservation payments. Land Economics, 78(3), 339–353.
- Fleming, P., Lichtenberg, E., & Newburn, D. A. (2018). Evaluating impacts of agricultural cost sharing on water quality: Additionality, crowding In, and slippage. Journal of Environmental Economics and Management, 92, 1–19.
- Fraser, R. (2002). Moral hazard and risk management in agri-environmental policy. Journal of Agricultural Economics, 53(3), 475–487.
- Hairston-Strang, A. (2005). *Riparian forest buffer design and maintenance* (tech. rep.). Maryland Department of Natural Resources Forest Service.

References II

- Hart, R., & Latacz-Lohmann, U. (2005). Combating moral hazard in agri-environmental schemes: a multiple-agent approach. European Review of Agricultural Economics, 32(1), 75–91.
- Hellerstein, D., Higgins, N. A., & Roberts, M. (2015). Options for improving conservation programs: Insights from auction theory and economic experiments. *Amber Waves, February.*
- Horowitz, J. K., & Just, R. E. (2013). Economics of additionality for environmental services from agriculture. Journal of Environmental Economics and Management, 66(1), 105–122.
- Jack, B. K., Kousky, C., & Sims, K. R. E. (2008). Designing payments for ecosystem services: Lessons from previous experience with incentive-based mechanisms. *Proceedings of the national Academy of Sciences*, 105(28), 9465–9470.
- Lankoski, J., Lichtenberg, E., & Ollikainen, M. (2010). Agri-environmental program compliance in a heterogeneous landscape. *Environmental and Resource Economics*, 47(1), 1–22.
- Lichtenberg, E. (2021). Additionality in payment for ecosystem services programs: Agricultural conservation subsidies in Maryland. Land Economics, 97(2), 305–320.
- Lichtenberg, E., & Smith-Ramirez, R. (2011). Slippage in conservation cost sharing. American Journal of Agricultural Economics, 93(1), 113–129.
- Mason, C. F., & Plantinga, A. J. (2013). The additionality problem with offsets: Optimal contracts for carbon sequestration in forests. *Journal of Environmental Economics and Management*, 66(1), 1–14.

References III

- Mezzatesta, M., Newburn, D. A., & Woodward, R. T. (2013). Additionality and the adoption of farm conservation practices. Land Economics, 89(4), 722–742.
- Palm-Forster, L. H., Swinton, S. M., Lupi, F., & Shupp, R. S. (2016). Too burdensome to bid: transaction costs and pay-for-performance conservation. *American Journal* of Agricultural Economics, 98(5), 1314–1333.
- Pates, N. J., & Hendricks, N. P. (2020). Additionality from payments for environmental services with technology diffusion. American Journal of Agricultural Economics, 102(1), 281–299.
- Peterson, J. M., Smith, C. M., Leatherman, J. C., Hendricks, N. P., & Fox, J. A. (2015). Transaction costs in payment for environmental service contracts. American Journal of Agricultural Economics, 97(1), 219–238.
- Ribaudo, M., & Shortle, J. (2019). Reflections on 40 years of applied economics research on agriculture and water quality. Agricultural and Resource Economics Review, 48(3), 519–530.
- Savage, J., & Ribaudo, M. (2016). Improving the efficiency of voluntary water quality conservation programs. Land economics, 92(1), 148–166.
- Suter, J. F., Poe, G. L., & Bills, N. L. (2008). Do landowners respond to land retirement incentives? Evidence from the conservation reserve enhancement program. Land Economics, 84(1), 17–30.
- Talberth, J., Selman, M., Walker, S., & Gray, E. (2015). Pay for performance: Optimizing public investments in agricultural best management practices in the Chesapeake Bay Watershed. *Ecological Economics*, 118, 252–261.

References IV

Wu, J., & Babcock, B. A. (1996). Contract design for the purchase of environmental goods from agriculture. American journal of agricultural economics, 78(4), 935–945.
Wunder, S., Börner, J., Ezzine-de Blas, D., Feder, S., & Pagiola, S. (2020). Payments for environmental services: Past performance and pending potentials. Annual Review of Resource Economics, 12, 209–234.