

Social Cost of Water Pollution Workshop September 7-9, 2022. Washington, D.C.

Designing Payments for Multiple Ecosystem Services with Advanced Biofuels in the Mississippi River Basin

Xinxin Fan¹, Madhu Khanna ^{1, 2}*, Theodore Hartman³, and Andy Vanloocke ³

¹DOE Center for Advanced Bioenergy and Bioproducts Innovation, ² Department of Agricultural and Consumer Economics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, US.

³ Department of Agronomy, Iowa State University, Ames, IA 50011, US.

0

What are the Ecosystem Benefits of Advanced Biofuels?

- Advanced biofuels can achieve multiple ecosystem services
 - Impacts depend on feedstocks used and locations
 - -- Crop residue harvesting could
 - decrease soil carbon (C) stock and increase CO₂ emissions;
 - worsen nitrogen (N) losses.
 - -- Perennial energy crops have the potential to
 - mitigate GHG emissions;
 - reduce N leakage.

How does the Current Biofuel Policy Affect Water Quality?

- Biofuel mandates focus on lifecycle GHG emissions reduction
 - Not consider water quality effects
 - -- Corn ethanol mandate
 - increases N leaching and worsens hypoxia in the Gulf of Mexico
 - -- Cellulosic ethanol mandate
 - treats cellulosic biofuels from feedstocks that achieve GHG savings identically
 - does not create incentives for biofuels from perennial energy crops that are lower in carbon intensity and N losses while higher in costs (vs. crop residues)

Goals

- Examine the economic and environmental impacts of
 - biofuel production in response to the biofuel mandate
 - achieving GHG emission and water quality targets in addition to a biofuel mandate

Methods

- Developed an integrated modeling framework
 - Inking the Economic Model--Biofuel and Environmental Policy Analysis (BEPAM) with Ecosystem Models.
- Under multiple **Policy Scenarios** to estimate
 - > Optimal payments and welfare costs of meeting various policy targets
 - Land use change and spatial pattern of crop production
 - Food and fuel prices

Human Transformations

Biofuel and Environmental Policy Analysis (BEPAM)

<u>Integrated Biosphere Simulator –</u> **Agricultural Version (Agro-IBIS)**

nitrate mass/concentration)

Terrestrial Hydrologic Model with Biogeochemistry (THMB)

source nitrogen

Irrigation, dams, point

• Objective Function:

Determine the allocation of land to alternative uses to maximize the sum of producers' and consumers' surpluses (social welfare) derived from production/consumption of all primary/processed products subject to technology, climate and land availability constraints.

- Constraints
 - Agricultural Sector:
 - -- Market equilibrium (demand=supply)
 - Row crops: domestic demand + livestock feed + processed commodity + export
 - Biomass
 - Livestock
 - -- Land availability (crop land & marginal land): row crops + grazing land
 - -- Historical land constraint
 - -- Productivity of the commodities and input requirements
 - ➤ Fuel Sector:
 - -- Market equilibrium (demand=supply)
 - Crude oil, gasoline, diesel, and biofuel, imports and exports of fossil fuels, vehicle miles traveled
 - -- Constraints of ethanol blending rate for gasoline vehicles
 - -- Biofuel mandate constraints

Policy Scenarios

- Combine one biofuel mandate scenario below over 2016-2030:
 - ➢ Corn Ethanol Only:
 - -- 15 billion gallons of corn ethanol only
 - Corn + Cellulosic Ethanol:
 - -- 15 billion gallons of corn ethanol + 16 billion gallons of cellulosic ethanol
- With environmental targets over 2020-2030 individually and jointly:
 - \succ <u>N Policy</u>:

-- 5%, 10%, 15%, or 20% reduction target of N leaching to the Gulf of Mexico

➤ <u>GHG Policy</u>:

-- 5%, 10%, 15%, or 20% reduction target of GHG emissions

Results

Table 1: Effects of biofuel mandates over 2016-2030

Scenario	No Policy	Corn Ethanol Only Corn + Cellulosic Et				
	(\$ billion)	Absolute change relative to No Policy				
Fuel Sector	7305.9	-163.0	-255.1			
Agricultural Sector	3000.1	53.8	81.5			
Government Revenue	854.2	-4.3	0.0			
Total Welfare	11160.2	-113.5	-173.6			
	(billion MT)	% change relative to No Policy				
Cumulative Fuel Sector Emissions	29.6	-4.1%	-7.6%			
Cumulative Ag Sector Emissions	0.5	24.0%	24.4%			
Cumulative Total GHG Emissions	30.1	-3.6%	-7.0%			
	(M MT)	% change relative to No Policy				
N Leaching in 2030	0.6	16.9%	20.0%			

Note: **No Policy** assumes corn ethanol production is at the 2007 level of 6.5 billion gallons

under Biofuel Mandate Scenarios:

- Social welfare decreases;
- GHG emissions decrease while N leaching increases.

Table 2: Optimal payments and welfare costs over 2016-2030

Scenario (Corn Ethanol		or GHG Red er Corn Ethai		Corn + Cellulosic Ethanol	N or GHG Reduction under Corn + Cellulosic Ethanol				
	Only (Baseline)	20%NR	20%GHGR	20%NR + 20%GHGR		20%NR	20%GHGR	20%NR + 20%GHGR		
N tax (\$/kg)		17.7		9.6		16.2		5.9		
C tax (\$/tCO2e)			116.1	115.3			67.3	66.3		
	(\$ billion)		Absolute change relative to baseline							
Fuel Sector	7142.9	-6.8	-796.7	-796.2	-92.1	-102.3	-493.7	-491.8		
Agricultural Sector	3054.0	13.4	-7.0	-3.9	27.7	33.2	232.8	236.3		
Government Revenue	849.9	-0.4	-52.6	-52.5	4.3	3.7	-22.2	-22.0		
Total Welfare	11046.7	6.2	-856.3	-852.7	-60.0	-65.5	-283.1	-277.5		

Note: NR denotes N leaching Reduction and GHGR denote GHG emission Reduction

- Imposing both a N tax and a C tax is more cost effective, particularly under corn + cellulosic ethanol scenario.
- Welfare tends to increase (or decrease slightly) in the agricultural sector while decrease greatly in the fuel sector.

Table 3: Cropland allocation and crop prices in 2030

	Corn Ethanol	N or GHG Reduction under Corn Ethanol Only			Corn +	N or GHG Reduction under Corn + Cellulosic Ethanol			
	Only (Baseline)	20%NR	20%GHGR	20%NR + 20%GHGR	Cellulosic Ethanol	20%NR	20%GHGR	20%NR + 20%GHGR	
Cropland by Crop	(M Ha)	% change relative to baseline							
Total	114.0	-3.4%	-3.8%	-4.5%	2.1%	-0.6%	1.8%	0.2%	
Corn	32.6	-4.4%	-8.0%	-9.3%	-1.0%	-5.5%	-9.5%	-10.6%	
Soybeans	33.3	-1.4%	4.8%	4.1%	-1.8%	-3.1%	0.7%	-0.1%	
Wheat	18.0	-6.0%	-8.4%	-9.0%	-4.7%	-9.1%	-9.0%	-12.6%	
				-		Absol	ute value		
Miscanthus				-	5.0	5.5	8.4	8.2	
Switchgrass					0.8	0.7	0.7	0.7	
Crop Price	(\$/MT)			% char	nge relative to	baseline			
Corn	138.3	15.9%	-0.5%	7.1%	2.2%	16.7%	1.8%	6.9%	
Soybeans	273.6	3.2%	-10.6%	-9.0%	5.2%	7.9%	0.0%	2.1%	
Wheat	169.8	6.8%	15.4%	17.1%	6.1%	13.7%	15.4%	20.4%	
Cropland by Rotatio	on (M Ha)	% change relative to baseline							
Corn-Soybean	47.8	-0.1%	0.0%	-2.5%	-4.1%	0.3%	-2.2%	-3.4%	
СТ	21.3	-1.8%	-99.2%	-99.3%	-1.8%	-7.3%	-98.8%	-99.2%	
NT	26.5	1.2%	80.1%	75.6%	-5.9%	6.4%	75.8%	74.0%	
Continuous Corn	8.6	-16.4%	-30.3%	-28.6%	7.6%	-21.7%	-29.8%	-30.8%	
СТ	0.2	8.5%	-99.4%	-99.4%	130.2%	12.7%	-58.2%	-58.2%	
NT	8.4	-17.0%	-28.9%	-27.2%	5.0%	-22.4%	-29.2%	-30.3%	

Note: **NR**: **N** leaching Reduction and **GHGR** denote **GHG** emission Reduction;

CT: Conventional Tillage. **NT**: No Tillage.

> Table 4: Cropland allocation in Mississippi Atchafalaya River Basin (MARB), 2030

	Corn Ethanol Only (Baseline)	N or GHG Reduction under Corn Ethanol Only			Corn +	N or GHG Reduction under Corn + Cellulosic Ethanol			
			20%GHGR	20%NR + 20%GHGR	Cellulosic Ethanol		20%GHGR	20%NR + 20%GHGR	
Rotation	(M Ha)	% change relative to baseline							
Continuous Corn	5.6	-29.9%	-35.5%	-38.9%	12.8%	-32.9%	-36.7%	-40.5%	
Corn-Soybean	41.1	-2.6%	0.0%	-3.6%	-4.5%	-2.1%	-2.3%	-4.2%	
Continuous Soybean	5.9	10.7%	29.7%	35.3%	9.4%	2.5%	17.0%	21.2%	
Continuous Wheat	11.8	-10.9%	-11.2%	-12.6%	-6.4%	-13.6%	-11.0%	-16.3%	
Energy Crops		Absolute value							
Miscanthus					3.5	4.1	6.0	5.8	
Switchgrass					0.3	0.3	0.3	0.4	

Note: NR denotes N leaching Reduction and GHGR denote GHG emission Reduction

- Land under continuous corn decrease the most while land under corn+soybean rotation the least.
- Land under energy crops increases.

Figure 1: CRDs with Cropland under Continuous Corn Decreases While under Cron+Soybean Increases in 2030

20% NR + 20% GHGR with Corn Ethanol Only vs. Corn Ethanol Only (Baseline)

 land under continuous corn decreasing while land under corn+soybean rotation or energy crops increasing would occur in the MARB, particularly under corn+cellulosic ethanol scenario.

Note: CRD: Crop Reporting District MARB: Mississippi Atchafalaya River Basin

Figure 2: CRDs with Cropland under Continuous Corn Decreases While under Cron+Soybean or Energy Crops Increases in 2030

20% NR + 20% GHGR with Corn+Cellulosic Ethanol vs. Corn Ethanol Only (Baseline)

 Δ COCO Land < 0 &</th>Others Δ COSB Land > 0 & Δ EnergyCrop on Cropland = 0 Δ COCO Land < 0 &</td> Δ COSB Land = 0 & Δ EnergyCrop on Cropland > 0 Δ COCO Land < 0 &</td> Δ COCO Land < 0 &</td> Δ COSB Land > 0 & Δ COSB Land > 0 & Δ EnergyCrop on Cropland > 0

Table 5: Effects of N and GHG policy on fuel sector in 2030

Scenario	Corn Ethanol Only- (Baseline)	N or GHG Reduction under Corn Ethanol Only			Corn + ₋Cellulosic	N or GHG Reduction under Corn + Cellulosic Ethanol			
			20%GHGR	20%NR + 20%GHGR	Ethanol	20%NR	20%GHGR	20%NR + 20%GHGR	
Fuel Consumption	(billion liters)) % change relative to baseline							
Gasoline	373.7	-0.3%	-20.5%	-20.6%	-13.1%	-13.4%	-23.2%	-23.2%	
Diesel	199.5	-0.3%	-14.9%	-14.8%	-1.3%	-1.5%	-9.4%	-9.4%	
Corn Ethanol	53.5	-1.0%	-22.8%	-23.1%	-0.2%	-1.6%	-24.8%	-24.9%	
						Abso	olute value		
Cellulosic Ethanol					60.6	60.6	60.6	60.6	
Corn Stover Ethano	01				15.4	13.2	0.7	0.7	
Miscanthus Ethano	01				41.6	44.5	57.6	57.5	
Consumer Fuel Price	e (\$/liter)			% chang	e relative t	o baselin	e		
Gasoline	0.7	0.9%	52.0%	52.1%	5.4%	6.3%	33.9%	33.9%	
Diesel	0.6	1.1%	67.0%	66.9%	5.7%	6.8%	42.6%	42.3%	
Corn Ethanol	0.7	6.0%	0.3%	3.2%	0.6%	6.2%	0.6%	2.4%	
		Absolute value							
Cellulosic Ethanol					1.0	0.9	2.5	2.4	

Note: **NR** denotes **N** leaching Reduction and **GHGR** denote **GHG** emission Reduction

• Fuel consumption decreases and Prices increase.

Conclusions

- Imposing payments for both C emissions and N reduction is more cost effective than payment for one environmental service alone
 - -- particularly with cellulosic biofuels generating multiple co-benefits
- The addition of environmental performance goals to a biofuel mandate creates incentives to convert land
 - -- from N and C intensive continuous corn to corn-soybean rotation;
 - -- from row crops to energy crops in the Mississippi River Basin rather than producing energy crops only on low-cost marginal land.
- The results suggest trade-offs among economic effects and environmental benefits

Thank you very much!