

Social Cost of Water Pollution Workshop September 7-9, 2022. Washington, D.C.

Designing Payments for Multiple Ecosystem Services with Advanced Biofuels in the Mississippi River Basin

Xinxin Fan¹, Madhu Khanna ^{1,2}*, Theodore Hartman³, and Andy Vanloocke ³

¹DOE Center for Advanced Bioenergy and Bioproducts Innovation, ² Department of Agricultural and Consumer Economics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, US.

³ Department of Agronomy, Iowa State University, Ames, IA 50011, US.

What are the Ecosystem Benefits of Advanced Biofuels?

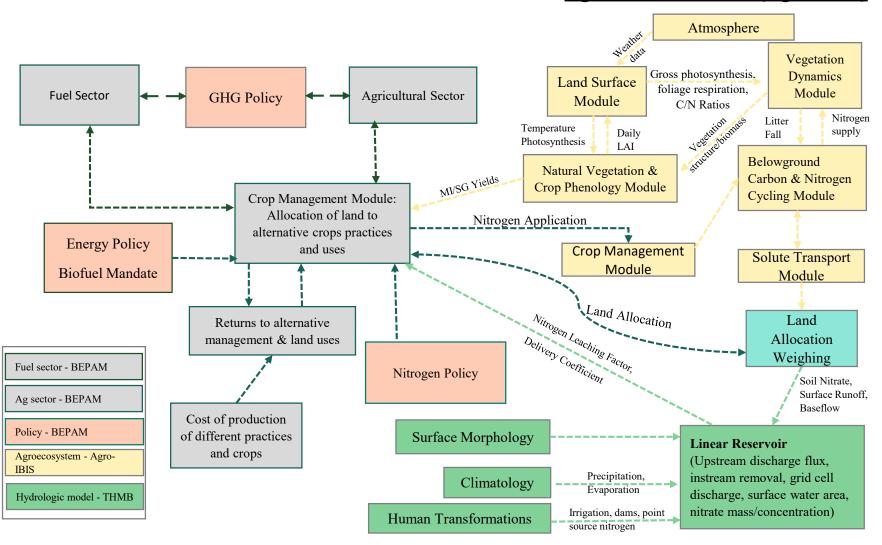
- Advanced biofuels can achieve multiple ecosystem services
 - > Impacts depend on feedstocks used and locations
 - -- Crop residue harvesting could
 - decrease soil carbon (C) stock and increase CO₂ emissions;
 - worsen nitrogen (N) losses.
 - -- Perennial energy crops have the potential to
 - mitigate GHG emissions;
 - reduce N leakage.

How does the Current Biofuel Policy Affect Water Quality?

- Biofuel mandates focus on lifecycle GHG emissions reduction
 - > Not consider water quality effects
 - -- Corn ethanol mandate
 - increases N leaching and worsens hypoxia in the Gulf of Mexico
 - -- Cellulosic ethanol mandate
 - treats cellulosic biofuels from feedstocks that achieve GHG savings identically
 - does not create incentives for biofuels from perennial energy crops that are lower in carbon intensity and N losses while higher in costs (vs. crop residues)

Goals

- Examine the economic and environmental impacts of
 - > biofuel production in response to the biofuel mandate
 - > achieving GHG emission and water quality targets in addition to a biofuel mandate


Methods

- Developed an integrated modeling framework
 - ➤ <u>linking the Economic Model--Biofuel and Environmental Policy Analysis (BEPAM)</u> with Ecosystem Models.
- Under multiple Policy Scenarios to estimate
 - > Optimal payments and welfare costs of meeting various policy targets
 - ➤ Land use change and spatial pattern of crop production
 - > Food and fuel prices

Biofuel and Environmental Policy Analysis (BEPAM)

<u>Integrated Biosphere Simulator –</u> Agricultural Version (Agro-IBIS)

Terrestrial Hydrologic Model with Biogeochemistry (THMB)

BEPAM Overview

• Objective Function:

Determine the allocation of land to alternative uses to maximize the sum of producers' and consumers' surpluses (social welfare) derived from production/consumption of all primary/processed products subject to technology, climate and land availability constraints.

Constraints

- > Agricultural Sector:
- -- Market equilibrium (demand=supply)
 - Row crops: domestic demand + livestock feed + processed commodity + export
 - Biomass
 - Livestock
- -- Land availability (crop land & marginal land): row crops + grazing land
- -- Historical land constraint
- -- Productivity of the commodities and input requirements
- > Fuel Sector:
- -- Market equilibrium (demand=supply)
 - Crude oil, gasoline, diesel, and biofuel, imports and exports of fossil fuels, vehicle miles traveled
- -- Constraints of ethanol blending rate for gasoline vehicles
- -- Biofuel mandate constraints

Policy Scenarios

- Combine one biofuel mandate scenario below over 2016-2030:
 - Corn Ethanol Only:
 - -- 15 billion gallons of corn ethanol only
 - > Corn + Cellulosic Ethanol:
 - -- 15 billion gallons of corn ethanol + 16 billion gallons of cellulosic ethanol
- With environmental targets over 2020-2030 individually and jointly:
 - > N Policy:
 - -- 5%, 10%, 15%, or 20% reduction target of N leaching to the Gulf of Mexico
 - > GHG Policy:
 - -- 5%, 10%, 15%, or 20% reduction target of GHG emissions

Results

Table 1: Effects of biofuel mandates over 2016-2030

Scenario	No Policy	Corn Ethanol Only	Corn + Cellulosic Ethanol		
	(\$ billion)	Absolute change relative to No Policy			
Fuel Sector	7305.9	-163.0	-255.1		
Agricultural Sector	3000.1	53.8	81.5		
Government Revenue	854.2	-4.3	0.0		
Total Welfare	11160.2	-113.5	-173.6		
	(billion MT)	% change relative to No Policy			
Cumulative Fuel Sector Emissions	29.6	-4.1%	-7.6%		
Cumulative Ag Sector Emissions	0.5	24.0%	24.4%		
Cumulative Total GHG Emissions	30.1	-3.6%	-7.0%		
	(M MT)	% change relative to No Policy			
N Leaching in 2030	0.6	16.9%	20.0%		

Note: **No Policy** assumes corn ethanol production is at the 2007 level of 6.5 billion gallons

under Biofuel Mandate Scenarios:

- Social welfare decreases;
- GHG emissions decrease while N leaching increases.

Table 2: Optimal payments and welfare costs over 2016-2030

Scenario	Corn Ethanol		or GHG Red r Corn Etha		Corn + Cellulosic Ethanol	N or GHG Reduction under Corn + Cellulosic Ethanol			
	Only (Baseline)	20%NR	20%GHGR	20%NR + 20%GHGR		20%NR	20%GHGR	20%NR + 20%GHGR	
N tax (\$/kg)		17.7		9.6		16.2		5.9	
C tax (\$/tCO2e)			116.1	115.3			67.3	66.3	
	(\$ billion)	Absolute change relative to baseline							
Fuel Sector	7142.9	-6.8	-796.7	-796.2	-92.1	-102.3	-493.7	-491.8	
Agricultural Sector	3054.0	13.4	-7.0	-3.9	27.7	33.2	232.8	236.3	
Government Revenue	849.9	-0.4	-52.6	-52.5	4.3	3.7	-22.2	-22.0	
Total Welfare	11046.7	6.2	-856.3	-852.7	-60.0	-65.5	-283.1	-277.5	

Note: NR denotes N leaching Reduction and GHGR denote GHG emission Reduction

- Imposing both a N tax and a C tax is more cost effective, particularly under corn + cellulosic ethanol scenario.
- Welfare tends to increase (or decrease slightly) in the agricultural sector while decrease greatly in the fuel sector.

Table 3: Cropland allocation and crop prices in 2030

		N or GHG Reduction			Corn +	N or GHG Reduction		
	Corn Ethanol	under Corn Ethanol Only			Cellulosic	under Corn + Cellulosic Ethanol		
	Only (Baseline)	20%NR	20%GHGR	20%NR + 20%GHGR	Ethanol	20%NR	20%GHGR	20%NR + 20%GHGR
Cropland by Crop	(M Ha)	% change relative to baseline						
Total	114.0	-3.4%	-3.8%	-4.5%	2.1%	-0.6%	1.8%	0.2%
Corn	32.6	-4.4%	-8.0%	-9.3%	-1.0%	-5.5%	-9.5%	-10.6%
Soybeans	33.3	-1.4%	4.8%	4.1%	-1.8%	-3.1%	0.7%	-0.1%
Wheat	18.0	-6.0%	-8.4%	-9.0%	-4.7%	-9.1%	-9.0%	-12.6%
				_		Absolu	ute value	
Miscanthus				_	5.0	5.5	8.4	8.2
Switchgrass					0.8	0.7	0.7	0.7
Crop Price	(\$/MT)			% chan	ge relative to	baseline		
Corn	138.3	15.9%	-0.5%	7.1%	2.2%	16.7%	1.8%	6.9%
Soybeans	273.6	3.2%	-10.6%	-9.0%	5.2%	7.9%	0.0%	2.1%
Wheat	169.8	6.8%	15.4%	17.1%	6.1%	13.7%	15.4%	20.4%
Cropland by Rotation	on (M Ha)	% change relative to baseline						
Corn-Soybean	47.8	-0.1%	0.0%	-2.5%	-4.1%	0.3%	-2.2%	-3.4%
CT	21.3	-1.8%	-99.2%	-99.3%	-1.8%	-7.3%	-98.8%	-99.2%
NT	26.5	1.2%	80.1%	75.6%	-5.9%	6.4%	75.8%	74.0%
Continuous Corn	8.6	-16.4%	-30.3%	-28.6%	7.6%	-21.7%	-29.8%	-30.8%
CT	0.2	8.5%	-99.4%	-99.4%	130.2%	12.7%	-58.2%	-58.2%
NT	8.4	-17.0%	-28.9%	-27.2%	5.0%	-22.4%	-29.2%	-30.3%

Note: NR: N leaching Reduction and GHGR denote GHG emission Reduction;

CT: Conventional Tillage. NT: No Tillage.

Table 4: Cropland allocation in Mississippi Atchafalaya River Basin (MARB), 2030

	Corn Ethanol	N or GHG Reduction under Corn Ethanol Only			Corn +	N or GHG Reduction under Corn + Cellulosic Ethanol			
	Only (Baseline)		20%GHGR	20%NR + 20%GHGR	Cellulosic Ethanol		20%GHGR	20%NR + 20%GHGR	
Rotation	(M Ha)	% change relative to baseline							
Continuous Corn	5.6	-29.9%	-35.5%	-38.9%	12.8%	-32.9%	-36.7%	-40.5%	
Corn-Soybean	41.1	-2.6%	0.0%	-3.6%	-4.5%	-2.1%	-2.3%	-4.2%	
Continuous Soybean	5.9	10.7%	29.7%	35.3%	9.4%	2.5%	17.0%	21.2%	
Continuous Wheat	11.8	-10.9%	-11.2%	-12.6%	-6.4%	-13.6%	-11.0%	-16.3%	
Energy Crops		Absolute value							
Miscanthus					3.5	4.1	6.0	5.8	
Switchgrass					0.3	0.3	0.3	0.4	

Note: NR denotes N leaching Reduction and GHGR denote GHG emission Reduction

- Land under continuous corn decrease the most while land under corn+soybean rotation the least.
- Land under energy crops increases.

Figure 1: CRDs with Cropland under Continuous Corn Decreases While under Cron+Soybean Increases in 2030

20% NR + 20% GHGR with Corn Ethanol Only vs. Corn Ethanol Only (Baseline)

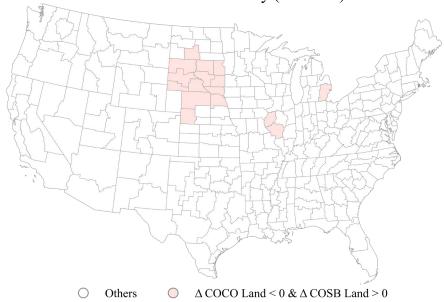
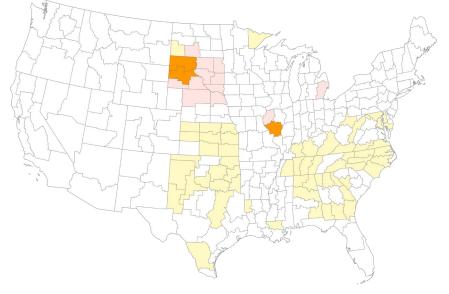



Figure 2: CRDs with Cropland under Continuous Corn Decreases While under Cron+Soybean or Energy Crops Increases in 2030

20% NR + 20% GHGR with Corn+Cellulosic Ethanol vs. Corn Ethanol Only (Baseline)

• land under continuous corn decreasing while land under corn+soybean rotation or energy crops increasing would occur in the MARB, particularly under corn+cellulosic ethanol scenario.

Note: CRD: Crop Reporting District

MARB: Mississippi Atchafalaya River Basin

Table 5: Effects of N and GHG policy on fuel sector in 2030

Scenario	Corn Ethanol Only	N or GHG Reduction under Corn Ethanol Only			Corn + Cellulosic	N or GHG Reduction under Corn + Cellulosic Ethanol		
	(Baseline)		20%GHGR	20%NR + 20%GHGR	Ethanol	20%NR	20%GHGR	20%NR + 20%GHGR
Fuel Consumption	(billion liters)			% change	e relative t	o baselin	e	
Gasoline	373.7	-0.3%	-20.5%	-20.6%	-13.1%	-13.4%	-23.2%	-23.2%
Diesel	199.5	-0.3%	-14.9%	-14.8%	-1.3%	-1.5%	-9.4%	-9.4%
Corn Ethanol	53.5	-1.0%	-22.8%	-23.1%	-0.2%	-1.6%	-24.8%	-24.9%
						Abso	olute value	
Cellulosic Ethanol					60.6	60.6	60.6	60.6
Corn Stover Ethano	1				15.4	13.2	0.7	0.7
Miscanthus Ethano	1				41.6	44.5	57.6	57.5
Consumer Fuel Price	e (\$/liter)			% change	e relative t	o baselin	e	
Gasoline	0.7	0.9%	52.0%	52.1%	5.4%	6.3%	33.9%	33.9%
Diesel	0.6	1.1%	67.0%	66.9%	5.7%	6.8%	42.6%	42.3%
Corn Ethanol	0.7	6.0%	0.3%	3.2%	0.6%	6.2%	0.6%	2.4%
		Absolute value						
Cellulosic Ethanol					1.0	0.9	2.5	2.4

Note: NR denotes N leaching Reduction and GHGR denote GHG emission Reduction

• Fuel consumption decreases and Prices increase.

Conclusions

- Imposing payments for both C emissions and N reduction is more cost effective than payment for one environmental service alone
 - -- particularly with cellulosic biofuels generating multiple co-benefits
- The addition of environmental performance goals to a biofuel mandate creates incentives to convert land
 - -- from N and C intensive continuous corn to corn-soybean rotation;
 - -- from row crops to energy crops in the Mississippi River Basin rather than producing energy crops only on low-cost marginal land.
- The results suggest trade-offs among economic effects and environmental benefits

Thank you very much!