# Relocation of Nutrient Runoff from Agricultural Production

Taiwo Akinyemi\*, Yuelu Xu, Levan Elbakidze, Haw Yen, Jeffrey G. Arnold, Philip W. Gassman

Division of Resource Economics and Management

West Virginia University

September 2022



### Outline

- Introduction
- Materials and Method
- Results
- Conclusion



#### Introduction

- Nitrogen (N) fertilizers for crop production contribute to eutrophication.
- Eutrophication leads to hypoxia (low oxygen) in aquatic ecosystems (Chang et al., 2021; Diaz & Rosenberg, 2008; Du et al., 2018)
- damages marine habitats
- disrupts the food web
- decreases fishery catch, alters nutrient cycling, and
- increases the acidity of the water column
- Gulf of Mexico
- MARB covers 70% of US cropland and delivers large amounts of nutrient runoff to the Gulf of Mexico
- a 45% N reduction set in the 2008 Action Plan by US EPA

  - to reduce the hypoxic zone to about 5,000 km<sup>2</sup> by 2035 Yet, the hypoxic zone grew to 22792km<sup>2</sup> in 2017 (Khanna et al. 2019)
- Chesapeake Bay
  - Total Maximum Daily Load (TMDL)
    - to reduce N, P, and sediment for each tributary draining into it
- Lake Erie
  - Major concern is the large amounts of P from agriculture runoff





#### Introduction Continued

- Mississippi Atchafalaya River Basin (MARB), Chesapeake Bay Watershed (CBW), and Maumee River Basin (MRB)
- Agricultural Production in the watersheds
  - a significant source of nutrient loadings in rivers, lakes, estuaries, and coastal waters
  - nonpoint source (NPS) water pollution is a public concern. The main issue is Hypoxia.

Contiguous US Counties and the Watersheds





#### Motivation

- Nutrient runoff from agricultural production in the three watersheds has been extensively studied in isolation.
  - Cost-effective strategies to reduce nutrient losses from cropland in the MARB (Ribaudo et al., 2001; Kling et al., 2014; Rabotyagov et al., 2014; Marshall et al., 2018)
  - Reduction of controllable sources of N and P in CBW (Boesch et al., 2001; Ator et al., 2020, Bosch et al., 2018)
  - Nutrient loads from MRB, best management practices, and nutrient reduction in western Lake Erie (Kast et al., 2021; Liu et al., 2020).
- Xu et al. (2022) document a need for investigating the potential increase in N runoff to Lake Erie and other watersheds from restrictions on N runoff from MARB to the Gulf of Mexico.
  - An increase in the acreage of N-intensive crops outside of MARB when N runoff restrictions are imposed in the Gulf of Mexico.
  - Potential for runoff relocation from more to less stringently regulated watersheds
  - Take a global rather than local view of policies' impacts using a price endogenous model (Ribaudo et al., 2001).



#### An Integrated Hydro-Economic Land Use Model(IHEAL)

- Following Xu et al. (2022)
  - Economic model: a price endogenous partial equilibrium (PE) model for the contiguous United States
  - Hydrological Model: Hydrologic and Water Quality System (HAWQS) for the MARB, CBW, and MRB
    - Soil and Water Assessment Tool (SWAT) assesses water quality.



The IHEAL model schematic (Xu et al., 2022)



## The PE model

- The objective function maximizes the sum of producer and consumer surplus in four commodity markets (Corn, soybean, wheat, and sorghum).
- Subject to constraints.
  - Supply-demand balance
  - Supply production balance
  - Crop acreage convexity constraints
  - Fertilizer costs
  - Irrigation costs
  - N delivered to the Gulf of Mexico, Lake Erie, and the Chesapeake Bay



### Research Questions

- Examine the interdependence of nutrient runoff from MARB, CBW, and MRB.
  - What are the potential impacts of reducing agricultural N runoff in the Gulf of Mexico (45%) on N runoff to
    - the Chesapeake Bay and
    - Lake Erie.
  - What is the opportunity cost of achieving the nutrient runoff reduction targets with
    - Unconstrained runoff to other watersheds (without Baseline Runoff Constraint Scenario (BRCS))
    - Constrained runoff to other watersheds i.e., with BRCS
  - What impacts do reducing N runoff from CBW or MRB have on MARB?



#### Data

- Corn, soybean, wheat, and sorghum
  - N intensive crops with most acreage
- County scale production
  - MARB 1590 counties
  - CBW 157 counties
  - MRB 24 counties
  - Outside Watersheds -1017 counties
- Demand
  - Commodity demand elasticities from literature and observed prices and quantities in 2018 from USDA NASS
- Supply
  - county-specific historical crop mixes from 2005 to 2019 (USDA NASS)
  - county-specific cost data in 2018 (USDA ERS)
  - Production functions obtained from SWAT/HAWQS



|                                    | Validation results (historical |                  | Baseline results (historio |  |  |
|------------------------------------|--------------------------------|------------------|----------------------------|--|--|
|                                    | acreage mix only)              | Observed in 2018 | and synthetic acreage mix) |  |  |
| Land use (million hectares) for th | ne contiguous U.S.             |                  |                            |  |  |
| Corn                               | 39.313                         | 36               | 38.818                     |  |  |
| Soybean                            | 38.511                         | 36.1             | 37.608                     |  |  |
| Winter Wheat                       | 13.747                         | 13.27            | 11.162                     |  |  |
| Sorghum                            | 2.187                          | 2.3              | 2.099                      |  |  |
| Prices (\$/metric ton)             |                                |                  |                            |  |  |
| Corn                               | 136.818                        | 142              | 137.638                    |  |  |
| Soybean Price                      | 316.326                        | 314              | 321.288                    |  |  |
| Wheat Price                        | 172.618                        | 187              | 202.677                    |  |  |
| Sorghum Price                      | 110.073                        | 117              | 107.698                    |  |  |
| Land use (million hectares) in Ma  | ARB                            |                  |                            |  |  |
| Corn                               | 31.977                         | 30.247           | 30.796                     |  |  |
| Soybean                            | 29.042                         | 30.145           | 27.697                     |  |  |
| Wheat                              | 10.640                         | 11.116           | 6.940                      |  |  |
| Sorghum                            | 1.667                          | 1.903            | 1.357                      |  |  |
| Land use (million hectares) in CB  | W                              |                  |                            |  |  |
| Corn                               | 0.974                          | 0.962            | 0.984                      |  |  |
| Soybean                            | 0.825                          | 0.703            | 0.829                      |  |  |
| Wheat                              | 0.335                          | 0.163            | 0.355                      |  |  |
| Land use (million hectares) in MI  | RB                             |                  |                            |  |  |
| Corn                               | 0.705                          | 0.689            | 0.707                      |  |  |
| Soybean                            | 0.989                          | 0.988            | 0.986                      |  |  |
| Wheat                              | 0.142                          | 0.118            | 0.144                      |  |  |
| Land use (million hectares) Outs   | ide the watersheds             |                  |                            |  |  |
| Corn                               | 5.647                          | 9.634            | 6.332                      |  |  |
| Soybean                            | 7.655                          | 9.104            | 8.095                      |  |  |
| Wheat                              | 2.631                          | 3.359            | 3.722                      |  |  |
| Sorghum                            | 0.520                          | 1,900            | 0.742                      |  |  |

Model Validation and Baseline Results with Observed Values in 2018

|          |                                                     | Baseline results (historical and | % change from 45% N          | % change from 45% N |                     |
|----------|-----------------------------------------------------|----------------------------------|------------------------------|---------------------|---------------------|
|          |                                                     | synthetic acreage mix)           | <b>Reduction to the Gulf</b> | Reduction to        | o the Gulf and BRCS |
|          | Land use (million hectares) for the contiguous U.S. |                                  |                              |                     |                     |
|          | Corn                                                | 38.818                           | 3                            | 1.04                | 1.04                |
|          | Soybean                                             | 37.608                           | 3                            | -4.41               | -4.39               |
|          | Wheat                                               | 11.162                           | <u>)</u>                     | 2.65                | 2.66                |
|          | Sorghum                                             | 2.099                            | )                            | 7.72                | 7.72                |
|          | Prices (\$/metric ton)                              |                                  |                              |                     |                     |
|          | Corn                                                | 137.638                          | 3                            | 25.16               | 25.52               |
|          | Soybean                                             | 321.288                          | 3                            | 21.04               | 21.08               |
| Results  | Wheat                                               | 202.677                          | 7                            | 4.74                | 4.74                |
| INCJUILS | Sorghum                                             | 107.698                          | 3                            | -13.41              | -13.62              |
| for      | Land use (million hectares                          | ) in MARB                        |                              |                     |                     |
| 101      | Corn                                                | 30.796                           | 5                            | -9.23               | -9.13               |
|          | Soybean                                             | 27.697                           | 7                            | -15.36              | -15.43              |
| Dricos   | Wheat                                               | 6.940                            | )                            | 2.56                | 2.64                |
|          | Sorghum                                             | 1.357                            | 7                            | -6.85               | -6.78               |
| 1        | Land use (million hectares                          | ) in CBW                         |                              |                     |                     |
| and      | Corn                                                | 0.984                            | ļ                            | 12.70               | 8.23                |
| und      | Soybean                                             | 0.829                            | )                            | -1.21               | 1.45                |
|          | Wheat                                               | 0.355                            |                              | -3.94               | -3.69               |
| Lang     | Land use (million hectares                          | ) in MRB                         |                              |                     |                     |
|          | Corn                                                | 0.707                            | 7                            | 0.57                | 0.57                |
|          | Soybean                                             | 0.986                            | 5                            | -0.20               | -0.20               |
| use      | Wheat                                               | 0.144                            | 1                            | -0.69               | -0.69               |
|          | Land use (million hectares) Outside the watersheds  |                                  |                              |                     |                     |
|          | Corn                                                | 6.332                            | 2                            | 49.19               | 49.45               |
|          | Soybean                                             | 8.095                            | 5                            | 32.23               | 32.28               |
|          | Wheat                                               | 3.722                            | 2                            | 3.60                | 3.47                |
|          | Sorghum                                             | 0.742                            | 2                            | 34.37               | 34.37               |

Results for N Use, Runoff, and Production

|                                                   | Baseline results (historical and | % change from 45% N   | % change from 45% N Reduction |  |
|---------------------------------------------------|----------------------------------|-----------------------|-------------------------------|--|
|                                                   | synthetic acreage mix)           | Reduction to the Gulf | to the Gulf and BRCS          |  |
| N runoff MARB                                     |                                  |                       |                               |  |
| N applied                                         | 6352.70                          | ) <b>-20.8</b> 8      | 3 -20.81                      |  |
| N delivered (Gulf of Mexico)                      | 357680.00                        | ) <b>-45.00</b>       | -45.00                        |  |
| N runoff CBW                                      |                                  |                       |                               |  |
| N applied                                         | 286.40                           | ) <b>13.66</b>        | <b>0.00</b>                   |  |
| N delivered(Bay)                                  | 21109.00                         | ) <u>9.20</u>         | -0.00                         |  |
| N runoff MRB                                      |                                  |                       |                               |  |
| N applied                                         | 175.82                           | 2 <b>14.00</b>        | 0.00                          |  |
| N delivered(Lake Erie )                           | 3349.20                          | ) <b>7.18</b>         | -0.00                         |  |
| Production (million metric tons) for the contiguo | us U.S. Corn                     |                       |                               |  |
| Corn                                              | 383.5                            | 5 - <b>6.7</b> 2      | -6.87                         |  |
| Soybean                                           | 119.64                           | 4 - <b>6.2</b> 9      | -6.30                         |  |
| Wheat                                             | 31.20                            | 6 <b>-1.7</b> 9       | -1.79                         |  |
| Sorghum                                           | 9.49                             | 9 <b>3.5</b> 8        | 3.69                          |  |
| Production (million metric tons) for MARB         |                                  |                       |                               |  |
| Corn                                              | 329.48                           | 3 <b>-13.38</b>       | -13.29                        |  |
| Soybean                                           | 90.05                            | 5 <b>-15.4</b> 5      | 5 -15.54                      |  |
| Wheat                                             | 16.10                            | ) <b>-4.4</b> 1       | -4.35                         |  |
| Sorghum                                           | 5.99                             | 9 <b>-15.36</b>       | 5 -15.19                      |  |
| Production (million metric tons) for CBW          |                                  |                       |                               |  |
| Corn                                              | 8.03                             | 1 <b>12.4</b> 8       | 3 5.37                        |  |
| Soybean                                           | 2.18                             | 3 <b>-1.8</b> 3       | <b>3</b> 0.92                 |  |
| Wheat                                             | 1.33                             | 3 <b>-3.76</b>        | 5 -3.76                       |  |
| Production (million metric tons) for MRB          |                                  |                       |                               |  |
| Corn                                              | 7.25                             | 5 2.76                | 5 <b>0.41</b>                 |  |
| Soybean                                           | 3.5                              | 7 - <b>0.2</b> 8      | 3 -0.28                       |  |
| Wheat                                             | 0.64                             | 4 - <b>1.56</b>       | 5 -1.56                       |  |
| Production (million metric tons) Outside the wat  | er sheds                         |                       |                               |  |
| Corn                                              | 38.82                            | 2 <b>43.5</b> 3       | 3 43.69                       |  |
| Soybean                                           | 23.84                            | 4 <b>26.9</b> 7       | 27.01                         |  |
| Wheat                                             | 13.19                            | ) <b>1.5</b> 9        | 9 1.52                        |  |
| Sorghum                                           | 3.53                             | 1 <b>35.6</b> 1       | 35.61                         |  |

#### Results

- Scenarios
  - A 45% N runoff reduction goal set in the Gulf of Mexico without BRCS
  - A 45% N runoff reduction goal set in the Gulf of Mexico with BRCS

#### • Indicators from the scenarios

- County-Specific N Use
- County-Specific N Runoff
- Opportunity Cost of Enforcement
- CBW:
  - N Runoff Increase: 9.2%
- MRB
  - N Runoff Increase: 7.2%



#### Gulf N Reduction(MARB)





With BRCS

![](_page_14_Figure_0.jpeg)

![](_page_14_Picture_1.jpeg)

# Gulf N Reduction (MRB)

WestVirginiaUniversity.

![](_page_15_Figure_1.jpeg)

### Conclusion

- The opportunity cost of achieving the Hypoxia Task Force goal without BRCS:
  - \$6.7 billion annually in consumer and producer surplus losses.
- With BRCS in CBW and MRB
  - An increase of about **18 \$million**.
- Additional policy scenarios of 25% and 40% N reduction in CBW and MRB
  - Opportunity cost increases by **\$0.2 billion**.
- The policy impacts are heterogeneous amongst counties.
  - Take account of the hydrological and agronomic factors of the counties for cost-effective policies.
    - Design spatially explicit recommendations based on in-field variability in N needs (Khanna et al., 2019).

![](_page_16_Picture_10.jpeg)

#### Appendix

![](_page_17_Picture_1.jpeg)

#### The PE model

- The objective function (equation 1) maximizes the sum of producer and consumer surplus.
- $\max_{X,L} \sum_{c} \int_{0}^{x_{c}^{d}} p_{c}^{d} (X_{c}^{d}, \omega_{c}) dX_{c}^{d} \sum_{c,i,n} t c_{ci} * L_{cin} \sum_{c,i} F C_{ci}$ (1)
- $P_c^d(X_c^d, \omega_c)$  is the inverse demand function
- $X_c^d$  is the crop *c* aggregate demand
- $\omega_c$  is the corresponding demand shifter
- $tc_{ci}$  represents production cost per ha excluding N fertilizer use for crop c in county i
- $L_{cin}$  denotes the acreage of crop c in county i with n kg N fertilizer application
- $FC_{ci}$  stands for the total N fertilizer costs for crop c in county i

![](_page_18_Picture_9.jpeg)

### The PE model- Continued

- The maximization problem is subject to the below constraints:
- Balance equation:  $X_c^d + exports \le X_{ci}^s + imports \forall c$ , (2)
- Supply constraint:  $\sum_{n,w} y_{cin} * L_{cin} \ge X_{ci}^s \forall c, i,$  (3)
- Fertilizer costs:  $FC_{ci} = \sum_{n,w} \theta_{cin} * L_{cin} \forall c, i,$  (4)
- Water costs:  $WC_{ci} = \sum_{n,w} \boldsymbol{\mu}_{cin} * L_{cin} \forall c, i,$  (5)
- Total N delivered to the Gulf of Mexico:  $\sum_{n} L_{cin} = \sum_{m} \tau_{mi} * h_{cim} + \sum_{n} \gamma_{vi} * s_{civ} \forall c, i,$  (6)
- Convexity constraint:  $\sum_{m} \tau_{mi} + \sum_{n} \gamma_{vi} = 1 \forall i$ , (7)
- $y_{cin}$ : yield of crop c per ha in county i as a function of the respective N fertilizer use, nkg
- $h_{cim}$  and  $s_{civ}$  are m th and v th county-specific historical and synthetic crop acreages, respectively;
- $\tau_{mi}$  and  $\gamma_{vi}$  are weights determined endogenously

![](_page_19_Picture_11.jpeg)

#### HAWQS

- Hydrologic and Water Quality System (HAWQS)
  - SWAT: Calibrated and Web-based
  - Under various N fertilizer use and optimal irrigation level, it estimates crop yields and N loading.
  - Spatial unit is HUC8 (an eight-digit watershed)
  - Years: 2000 to 2018
- Data:
  - The HUC8 outputs are converted to county-level
    - using the weighted averages accounting for the % of each HUC8's area in the county.

![](_page_20_Picture_9.jpeg)

|                  | Baseline results               |                                 | % change from | 45% N Reduction | % change from 45% N          |
|------------------|--------------------------------|---------------------------------|---------------|-----------------|------------------------------|
|                  | (historical and                | (historical and 45% N Reduction |               | to the Gulf and | <b>Reduction to the Gulf</b> |
|                  | synthetic acreage mix)         | to the Gulf                     | to the Gulf   | BAU             | and BAU                      |
| Land use (millio | on hectares) for the contiguou | us U.S.                         |               |                 |                              |
| Corn             | 38.818                         | 39.220                          | 1.04          | 39.222          | 1.04                         |
| Soybean          | 37.608                         | 35.950                          | -4.41         | 35.957          | -4.39                        |
| Wheat            | 11.162                         | 11.458                          | 2.65          | 11.459          | 2.66                         |
| Sorghum          | 2.099                          | 2.261                           | 7.72          | 2.261           | 7.72                         |
| Prices (\$/metri | c ton) Corn                    |                                 |               |                 |                              |
| Corn             | 137.638                        | 172.262                         | 25.16         | 172.768         | 25.52                        |
| Soybean          | 321.288                        | 388.889                         | 21.04         | 389.005         | 21.08                        |
| Wheat            | 202.677                        | 212.280                         | 4.74          | 212.277         | 4.74                         |
| Sorghum          | 107.698                        | 93.259                          | -13.41        | 93.028          | -13.62                       |
| Land use (millio | on hectares) in MARB           |                                 |               |                 |                              |
| Corn             | 30.796                         | 27.954                          | -9.23         | 27.984          | -9.13                        |
| Soybean          | 27.697                         | 23.442                          | -15.36        | 23.424          | -15.43                       |
| Wheat            | 6.940                          | 7.118                           | 2.56          | 7.123           | 2.64                         |
| Sorghum          | 1.357                          | 1.264                           | -6.85         | 1.265           | -6.78                        |
| Land use (millio | on hectares) in CBW            |                                 |               |                 |                              |
| Corn             | 0.984                          | 1.109                           | 12.70         | 1.065           | 8.23                         |
| Soybean          | 0.829                          | 0.819                           | -1.21         | 0.841           | 1.45                         |
| Wheat            | 0.355                          | 0.341                           | -3.94         | 0.342           | -3.69                        |
| Land use (millio | on hectares) in MRB            |                                 |               |                 |                              |
| Corn             | 0.707                          | 0.711                           | 0.57          | 0.711           | 0.57                         |
| Soybean          | 0.986                          | 0.984                           | -0.20         | 0.984           | -0.20                        |
| Wheat            | 0.144                          | 0.143                           | -0.69         | 0.143           | -0.69                        |
| Land use (millio | on hectares) Outside the wate  | ersheds                         |               |                 |                              |
| Corn             | 6.332                          | 9.447                           | 49.19         | 9.463           | 49.45                        |
| Soybean          | 8.095                          | 10.704                          | 32.23         | 10.708          | 32.28                        |
| Wheat            | 3.722                          | 3.856                           | 3.60          | 3.851           | 3.47                         |
| Sorghum          | 0.742                          | 0.997                           | 34.37         | 0.997           | 34.37                        |

|                                          | Baseline results          | 45% N %<br>Reduction to N | % change from 45%  | 45% N Reduction<br>to the Gulf and | % change from 45% N<br>Reduction to the Gulf and |
|------------------------------------------|---------------------------|---------------------------|--------------------|------------------------------------|--------------------------------------------------|
|                                          | (historical and synthetic |                           | N Reduction to the |                                    |                                                  |
|                                          | acreage mix)              | the Gulf                  | Gulf               | BAU                                | BAU                                              |
| N runoff MARB                            |                           |                           |                    |                                    |                                                  |
| N applied                                | 6352.70                   | 5026.40                   | -20.88             | 5030.50                            | -20.81                                           |
| N delivered (Gulf of Mexico)             | 357680.00                 | 196720.00                 | -45.00             | 196720.00                          | -45.00                                           |
| N runoff CBW                             |                           |                           |                    |                                    |                                                  |
| N applied                                | 286.40                    | 325.53                    | 13.66              | 286.40                             | 0.00                                             |
| N delivered(Bay)                         | 21109.00                  | 23050.00                  | 9.20               | 20900.00                           | 0.00                                             |
| N runoff MRB                             |                           |                           |                    |                                    |                                                  |
| N applied                                | 175.82                    | 200.44                    | 14.00              | 175.82                             | 0.00                                             |
| N delivered(Lake Erie )                  | 3349.20                   | 3589.80                   | 7.18               | 3342.10                            | 0.00                                             |
| Production (million metric tons) for the | contiguous U.S. Corn      |                           |                    |                                    |                                                  |
| Corn                                     | 383.55                    | 357.59                    | -6.77              | 357.21                             | -6.87                                            |
| Soybean                                  | 119.64                    | 112.11                    | -6.29              | 112.10                             | -6.30                                            |
| Wheat                                    | 31.26                     | 30.70                     | -1.79              | 30.70                              | -1.79                                            |
| Sorghum                                  | 9.49                      | 9.83                      | 3.58               | 9.84                               | 3.69                                             |
| Production (million metric tons) for MA  | RB                        |                           |                    |                                    |                                                  |
| Corn                                     | 329.48                    | 285.41                    | -13.38             | 285.68                             | -13.29                                           |
| Soybean                                  | 90.05                     | 76.14                     | -15.45             | 76.06                              | -15.54                                           |
| Wheat                                    | 16.10                     | 15.39                     | -4.41              | 15.40                              | -4.35                                            |
| Sorghum                                  | 5.99                      | 5.07                      | -15.36             | 5.08                               | -15.19                                           |
| Production (million metric tons) for CBV | V                         |                           |                    |                                    |                                                  |
| Corn                                     | 8.01                      | 9.01                      | 12.48              | 8.44                               | 5.37                                             |
| Soybean                                  | 2.18                      | 2.14                      | -1.83              | 2.20                               | 0.92                                             |
| Wheat                                    | 1.33                      | 1.28                      | -3.76              | 1.28                               | -3.76                                            |
| Production (million metric tons) for MR  | В                         |                           |                    |                                    |                                                  |
| Corn                                     | 7.25                      | 7.45                      | 2.76               | 7.28                               | 0.41                                             |
| Soybean                                  | 3.57                      | 3.56                      | -0.28              | 3.56                               | -0.28                                            |
| Wheat                                    | 0.64                      | 0.63                      | -1.56              | 0.63                               | -1.56                                            |
| Production (million metric tons) Outside | the water sheds           |                           |                    |                                    |                                                  |
| Corn                                     | 38.82                     | 55.72                     | 43.53              | 55.78                              | 43.69                                            |
| Soybean                                  | 23.84                     | 30.27                     | 26.97              | 30.28                              | 27.01                                            |
| Wheat                                    | 13.19                     | 13.40                     | 1.59               | 13.39                              | 1.52 23                                          |
| Sorghum                                  | 3.51                      | 4.76                      | 35.61              | 4.76                               | 35.61                                            |

![](_page_23_Picture_0.jpeg)

![](_page_23_Picture_1.jpeg)