The Disproportionate Effects of Drought on Drinking Water Quality: Evidence from California

Sandy Sum

Bren School of Environmental Science and Management Department of Economics

University of California, Santa Barbara

September 9, 2022

- Drought is a prolonged period of abnormally low rainfall, frequently compounded by high temperature
- Drought will be more frequent and severe (IPCC, 2021)

- Drought is a prolonged period of abnormally low rainfall, frequently compounded by high temperature
- Drought will be more frequent and severe (IPCC, 2021)

Economic costs of drought

- Drought is a prolonged period of abnormally low rainfall, frequently compounded by high temperature
- Drought will be more frequent and severe (IPCC, 2021)

Year

Economic costs of drought

Credit: Gregory Urquiaga/UC Davis

- Drought is a prolonged period of abnormally low rainfall, frequently compounded by high temperature
- Drought will be more frequent and severe (IPCC, 2021)

Year

- Economic costs of drought
 - Water shortages → agricultural losses and domestic water supply disruptions

Credit: Gregory Urquiaga/UC Davis

- Drought is a prolonged period of abnormally low rainfall, frequently compounded by high temperature
- Drought will be more frequent and severe (IPCC, 2021)

Year

- Economic costs of drought
 - Water shortages → agricultural losses and domestic water supply disruptions
 - Heat related health and socioeconomic costs

Credit: Gregory Urquiaga/UC Davis

- Drought is a prolonged period of abnormally low rainfall, frequently compounded by high temperature
- Drought will be more frequent and severe (IPCC, 2021)

- Economic costs of drought
 - Water shortages → agricultural losses and domestic water supply disruptions
 - Heat related health and socioeconomic costs
 - Changes in drinking water quality

Credit: Gregory Urquiaga/UC Davis

Defining drinking water quality

Source: Community Water Center

Nitrates (MCL: 10mg/l)

- Anthropogenic: 90% from agricultural and waste systems
- Infant methemoglobinemia; birth defects and developmental outcomes in children; cardiovascular diseases

Arsenic (MCL: 10ug/l)

- Geogenic: depends on geological and soil properties
- Skin, lung, bladder cancers; diabetes; high blood pressure

Mechanisms for drought's impact on surface water quality

Mechanisms for drought's impact on surface water quality

Mechanisms for drought's impact on surface water quality

Drought is severe

- Drought is severe
- California is agriculturally intensive

- Drought is severe
- California is agriculturally intensive
 - Agriculture → nitrate pollution

- Drought is severe
- California is agriculturally intensive
 - Agriculture → nitrate pollution
 - Drought → groundwater pumping

• Who lives in places vulnerable to drought effects?

• Who lives in places vulnerable to drought effects?

- Who lives in places vulnerable to drought effects?
 - Predominantly low-income, rural, and majority-Latino communities

- Who lives in places vulnerable to drought effects?
 - Predominantly low-income, rural, and majority-Latino communities
 - "They Grow the Nation's Food, but They Can't Drink the Water" — The New York Times, 2019

- Who lives in places vulnerable to drought effects?
 - Predominantly low-income, rural, and majority-Latino communities
 - "They Grow the Nation's Food, but They Can't Drink the Water" — The New York Times, 2019
- Water's mobility makes it a common pool resource

- Who lives in places vulnerable to drought effects?
 - Predominantly low-income, rural, and majority-Latino communities
 - "They Grow the Nation's Food, but They Can't Drink the Water" — The New York Times, 2019
- Water's mobility makes it a common pool resource
 - Agricultural groundwater pumping (in the absence of well-defined property rights) not only imposes costs on others by driving down the stock of water but also by worsening water quality

- Who lives in places vulnerable to drought effects?
 - Predominantly low-income, rural, and majority-Latino communities
 - "They Grow the Nation's Food, but They Can't Drink the Water" — The New York Times, 2019
- Water's mobility makes it a common pool resource
 - Agricultural groundwater pumping (in the absence of well-defined property rights) not only imposes costs on others by driving down the stock of water but also by worsening water quality
 - Impacted communities incur adaptation or health costs

What is the impact of drought on drinking water quality across different socioeconomic subgroups?

Related literature

Drought and water quality

Smith et al. (2018); Lombard et al. (2021); Levy et al. (2021)

Water quality and environmental justice

Allaire (2019); Balazs et al (2012); Balazs et al. (2011); Fedinick et al(2019); Nigra et al (2020); Pace el al. (2021)

Qualitative evidence

e.g. New York Times (2011, 2012, 2019); The Washington Post (2019)

Costs of groundwater pumping

e.g. Naumann (2021); Medellín-Azuara (2022)

Data

- CA SWRB regulatory water monitoring data
 - Sample point **within** distribution system of water system
 - $i \in \{G, S\}$
- EPA ECHO SWDA PWS facility data
- Palmer Drought Severity Index
- PWS service area boundary shapefiles
 - + 2019 American Community Survey
 - + CA soil census
 - + USDA Crop Data Layer 2018
 - + CA well completion report

Nitrate in groundwater

Year

• All other

Majority Latino

Nitrate in groundwater

Arsenic in groundwater

• All other

Majority Latino

Nitrate in groundwater

Arsenic in groundwater

• All other

Majority Latino

Nitrate in groundwater

Arsenic in groundwater

• All other

Majority Latino

Drought years

Nitrate in groundwater

Year

Arsenic in groundwater

Year

$C_{iwt} = \beta D_{wt} + \gamma D_{wt} \times \mathbf{1}\{\% Latino > 50\} + \alpha D_{wt} \times \mathbf{1}\{Low income\} + \delta_i + \tau_w t$

i = sample point $i \in \{G, S\}$ w = water systemt = year

Other baseline econometric specification:

 (i) Tested combinations of geographical, administrative units, and year fixed effects.

Tables

- (ii) Interacted drought with measures of agricultural intensity and soil characteristics.
 - # ag wells in 1 mile
 - % crop land in 1 mile

Results

What is the cost of the 2012-2017 drought?

What is the cost of the 2012-2017 drought?

• Simulated N in drinking water wells under **no drought** conditions

What is the cost of the 2012-2017 drought?

• Simulated N in drinking water wells under **no drought** conditions

What is the cost of the 2012-2017 drought?

• Simulated N in drinking water wells under **no drought** conditions

What is the cost of the 2012-2017 drought?

- Simulated N in drinking water wells under **no drought** conditions
- Estimated <u>32 water source</u> exceeded health standard of 10 mg/l

What is the cost of the 2012-2017 drought?

- Simulated N in drinking water wells under **no drought** conditions
- Estimated <u>32 water source</u> exceeded health standard of 10 mg/l
- <u>3.4 million</u> people

Cost estimation for 2012-2017 drought

Depends on sociopolitical and behavioral responses

	Invest in new well or treatment	Purchase bottled water	No adaptation
Cost estimate (million \$)	32-160	1,836	Incur health costs
Source	CASWRB drinking water state fund grant projects report 2019	\$30/household from household surveys by Pacific Institute	

Exploring mechanisms

Why do we see this distribution even after conditioning on measures of agricultural intensity?

- Agricultural measures are imperfect e.g. historical N applications and AF of water pumped
- Heterogeneous water systems: sourcing deeper wells or investing in water treatment (imperfectly observed)
 - Safe Drinking Water Act of 1978 and CA's Human Right to Water of 2012 is well intended but more needs to be done
 - Small water systems that serve these minoritized groups lack the knowledge, funding, and expertise to draw up technical plans for application (voluntary)

Exploring mechanisms

Why do we see this distribution even after conditioning on measures of agricultural intensity?

- Agricultural measures are imperfect e.g. historical N applications and AF of water pumped
- Heterogeneous water systems: sourcing deeper wells or investing in water treatment (imperfectly observed)
 - Safe Drinking Water Act of 1978 and CA's Human Right to Water of 2012 is well intended but more needs to be done
 - Small water systems that serve these minoritized groups lack the knowledge, funding, and expertise to draw up technical plans for application (voluntary)

State Water Resources Control Board

State of the STATE of CALIFORNIA

It Lacks the Urgency Necessary to Ensure That Failing Water Systems Receive Needed Assistance in a Timely Manner

July 26, 2022

- The State Water Board has not prioritized the processing of water systems' funding applications so that the systems can improve their water quality.
 - Over the past five years, the average length of time for water systems to complete their applications and receive funding nearly doubled, from 17 months to 33 months.
 - The State Water Board has not established performance goals or metrics related to its cumbersome application process.

Conclusion

Findings

• Drought can widen existing drinking water quality gap

Next steps

- Dive into mechanisms
 - Target grants
 - Identify vulnerable spots for domestic well users
- Estimate WTP for safe drinking water detect bottled water purchases?

Policy Implications

- Drought emergency relief not enough
- Policies should account for inequities in drinking water quality
- Targeting by income will not close the gap

Thank you to the attendees and organizers!

Appreciate all comments and feedback: sandysum@ucsb.edu