Do environmental groups mitigate spillovers of water pollution?

Laura Grant & Christian Langpap Claremont McKenna College || Oregon State University September 9, 2022

If states can let dirty water flow into a neighboring state, they will because of decentralized oversight of Clean Water Act (CWA), most of the authorization/regulation is split into state jurisdiction

A few papers assess the discrepancy in water quality comparing states with authorization versus without

- Sigman 2002 (AER), 2005 (JEEM)
- Gunn 2022 (working paper)

If states can let dirty water flow into a neighboring state, they will because of decentralized oversight of Clean Water Act (CWA), most of the authorization/regulation is split into state jurisdiction

A few papers assess the discrepancy in water quality comparing states with authorization versus without

- Sigman 2002 (AER), 2005 (JEEM)
- Gunn 2022 (working paper)

Using novel data and design, we

- 1. verify (and update) the spillover results from papers above
- 2. broaden previous results for all upstream/downstream locations
- 3. find that environmental groups mitigate spillovers of water pollution

TBC... determine if environmental groups encourage better Clean Water Act compliance & enforcement near state boundaries.

Using novel data and design, we

- 1. verify (and update) the spillover results from papers above
- 2. broaden previous results for all upstream/downstream locations
- 3. find that environmental groups mitigate spillovers of water pollution

TBC... determine if environmental groups encourage better Clean Water Act compliance & enforcement near state boundaries.

$$WQ_{it} = \nu \mathsf{N}_t + \gamma \mathsf{G}_{it} + \lambda \mathsf{N}_t * \mathsf{G}_{it} + X_{it} * \beta' + \gamma_s + \tau_t + \epsilon_{it}$$
(1)

- WQ_{it} water quality at site *i* in year *t*
- N_i indicator of stream exit, by proximity to border
- G_{it} number of environmental groups (or \$spending) near site i in year t
- X_{it} other county level controls: urban, population, income, and percent college, republican, white, unemployment
- $\gamma_{\rm s}$ state fixed effect
- τ_t year fixed effect
- ϵ_{it} error term

Identification assumption: conditional on covariates, error is expected mean zero Threat to identification: locations of WQ sites *and* enviro groups are each endogenous

$$WQ_{it} = \nu \mathsf{N}_t + \gamma \mathsf{G}_{it} + \lambda \mathsf{N}_t * \mathsf{G}_{it} + X_{it} * \beta' + \gamma_s + \tau_t + \epsilon_{it}$$
(1)

- WQ_{it} water quality at site *i* in year *t*
- N_i indicator of stream exit, by proximity to border
- G_{it} number of environmental groups (or \$spending) near site i in year t
- X_{it} other county level controls: urban, population, income, and percent college, republican, white, unemployment
- $\gamma_{\rm s}$ state fixed effect
- τ_t year fixed effect
- ϵ_{it} error term

Identification assumption: conditional on covariates, error is expected mean zero **Threat to identification**: locations of WQ sites *and* enviro groups are each endogenous

Water Quality Sites, Dissolved Oxygen

4

The National Rivers and Streams Assessment (NRSA)

- Survey of ecological condition of the nation's rivers and streams
- Every five years: 2008–09, 2013–14, and 2018–19
- $\sim\!\!2,\!000$ sites per survey; $\sim\!\!1,\!000$ per summer field season
- *in situ* measurements of dissolved oxygen (DO), temperature, and pH; lab results for nitr, phos, tss

Pros:

- Locations selected randomly: probability-based sample design
- Reflect the full range flowing waters across the US

Cons:

Infrequent panel + few sites + single summer measure = low stat power

The National Rivers and Streams Assessment (NRSA)

- Survey of ecological condition of the nation's rivers and streams
- Every five years: 2008–09, 2013–14, and 2018–19
- $\sim\!\!2,\!000$ sites per survey; $\sim\!\!1,\!000$ per summer field season
- *in situ* measurements of dissolved oxygen (DO), temperature, and pH; lab results for nitr, phos, tss

Pros:

- Locations selected randomly: probability-based sample design
- Reflect the full range flowing waters across the US

Cons:

• Infrequent panel + few sites + single summer measure = low stat power

The National Rivers and Streams Assessment (NRSA)

- Survey of ecological condition of the nation's rivers and streams
- Every five years: 2008–09, 2013–14, and 2018–19
- $\sim\!\!2,\!000$ sites per survey; $\sim\!\!1,\!000$ per summer field season
- *in situ* measurements of dissolved oxygen (DO), temperature, and pH; lab results for nitr, phos, tss

Pros:

- Locations selected randomly: probability-based sample design
- Reflect the full range flowing waters across the US

Cons:

• Infrequent panel + few sites + single summer measure = low stat power

National Rivers and Streams Assessment (NRSA) Sites

6

Creating a Panel of Water Quality Data, 1989-2019

We download all available monitor-level measurements for dissolved oxygen (DO), temperature, nitrogen, phosphorus From https://www.waterqualitydata.us/, in STORET managed by the US EPA and NWIS administered by the USGS:

- Water quality data collected by federal agencies, states, tribes, volunteer groups, and universities
- About 20,000 sites for every year; not randomly located

We make a proxy measure for each NRSA site for each WQ type and year:

- Use GIS to select nearby proxy sites (< 5 miles away from NRSA), by year
- Calculate inverse-distance weighted mean for each NRSA location & year
- + 6,700 observations in three surveys \rightarrow 130,000 in three decades

Creating a Panel of Water Quality Data, 1989-2019

We download all available monitor-level measurements for dissolved oxygen (DO), temperature, nitrogen, phosphorus From https://www.waterqualitydata.us/, in STORET managed by the US EPA and NWIS administered by the USGS:

- Water quality data collected by federal agencies, states, tribes, volunteer groups, and universities
- About 20,000 sites for every year; not randomly located

We make a proxy measure for each NRSA site for each WQ type and year:

- $\bullet\,$ Use GIS to select nearby proxy sites (< 5 miles away from NRSA), by year
- Calculate inverse-distance weighted mean for each NRSA location & year
- + 6,700 observations in three surveys \rightarrow 130,000 in three decades

NRSA x WQ Portal

8

NRSA x WQ Portal

9

Empirical Strategy

Empirical Strategy

11

DO - 50 MILES TO EXIT - OLS

Dep Var.: DO – Summer (mg/L)

Stream Exits	-0.049*** (0.009)	-0.090*** (0.013)	-0.056*** (0.010)	-0.047*** (0.010)
Stream Exits * Number of Groups		0.006*** (0.002)		
Stream Exits * Total Expenditures (\$10,000s)			l.32E-04*** (2.5E-05)	
Stream Exits * Mean Expenditures (\$10,000s)				9.02E-04*** (1.3E-04)
Year FE	Y	Y	Y	Y
State FE	Y	Y	Y	Y
Obs.	129,164	129,164	129,164	129,164

Model Specification with Instrumental Variable

Water groups are **not** randomly located (tend to be where water quality is worse)

$$WQ_{it} = \nu \mathsf{N}_t + \gamma \mathsf{G}_{it}(\alpha_1 | \mathsf{V1}_{it}) + \lambda \mathsf{N}_t * \mathsf{G}_{it}(\alpha_2 | \mathsf{V2}_{it}) + X_{it}\beta' + \gamma_s + \tau_t + \epsilon_{it} \quad (2)$$

- WQ_{it} water quality at site *i* in year *t*
- N_i indicator of stream exit, by proximity to border
- G_{it} number of environmental groups near site *i* in year *t*

Following our previous work:

• $IV1_{it}$ - the price of giving to non-profits, as determined by 1 - taxrate

Significant predictor: Highly causal to non-profit activities Exclusion restriction/plausibly exogenous: Orthogonal to water quality

Model Specification with Instrumental Variable

Water groups are **not** randomly located (tend to be where water quality is worse)

$$WQ_{it} = \nu \mathsf{N}_t + \gamma \mathsf{G}_{it}(\alpha_1 | \mathsf{V1}_{it}) + \lambda \mathsf{N}_t * \mathsf{G}_{it}(\alpha_2 | \mathsf{V2}_{it}) + X_{it}\beta' + \gamma_s + \tau_t + \epsilon_{it} \quad (2)$$

- WQ_{it} water quality at site *i* in year *t*
- N_i indicator of stream exit, by proximity to border
- G_{it} number of environmental groups near site *i* in year *t*

Following our previous work:

• $IV1_{it}$ - the price of giving to non-profits, as determined by 1 - taxrate

Significant predictor: Highly causal to non-profit activities Exclusion restriction/plausibly exogenous: Orthogonal to water quality

DO - 50 MILES TO EXIT - IV FIRST STAGE

Dep Var.:	Stream	Stream	Stream
	Exits *	Exits *	Exits *
	Number	Total	Mean
	Groups	Expenditures	Expenditures
Stream Exits * Price of Giving	-11.838***	-424.577***	-22.678***
	(0.203)	(12.040)	(1.923)
Price of Giving	5.664***	l 94.893***	6.103***
	(0.201)	(9.613)	(1.342)
Cragg-Donald Wald F Stat.	2,963.85	840.019	80.390
p – Value	(0.000)	(0.000)	(0.000)

DO - 50 MILES TO EXIT - IV SECOND STAGE

Stream Exits	-0.049*** (0.009)	-0.240*** (0.036)	-0.223**** (0.033)	-0.617*** (0.112)
Stream Exits * Number of Groups		0.043*** (0.008)		
Stream Exits * Total Expenditures (\$10,000s)			0.001*** (2.2E-04)	
Stream Exits * Mean Expenditures (\$10,000s)				0.022*** (0.004)
Year FE	Y	Y	Y	Y
State FE	Y	Y	Y	Y
Obs.	129,164	129,164	129,164	129,164

Translate each coefficient into

- Amount of spillover, relative to mean DO
- Mitigation by groups, on average and for the marginal group, as a percent of the spillover effect above

MAGNITUDES - 50 MILES TO EXIT

Model:	Number of	Total	Mean
	Groups	Expenditures	Expenditures
OLS			
Spillover (% increase in DO)	0.6%	0.7%	0.6%
As % of annual DO Change	7.7%	8.8%	7.4%
Group Mitigation – Average	34.1%	39.7%	52.2%
Group Mitigation – Marginal	6.4%	0.24%	1.9%
IV			
Spillover (% increase in DO)	2.9%	3.2%	8.1%
As % of annual DO Change	37.8%	35.1%	97.3%
Group Mitigation – Average	95.3%	90.6%	96.1%
Group Mitigation – Marginal	17.88%	0.5%	3.6%

- DO is significantly worse if the stream is exiting the state
- Water groups mitigate this issue
- Implies that these groups can straddle state jurisdictions and reduce the spillover

Further work

- Other WQ measures
- Effects on enforcement and compliance
- Anything else?

- DO is significantly worse if the stream is exiting the state
- Water groups mitigate this issue
- Implies that these groups can straddle state jurisdictions and reduce the spillover

Further work

- Other WQ measures
- Effects on enforcement and compliance
- Anything else?

Thank You! lgrant@cmc.edu

DO - 10 MILES TO EXIT - OLS

Dep Var.: DO – Summer (mg/L)

Stream Exits	-0.032*** (0.011)	-0.084 ^{***} (0.018)	-0.053*** (0.014)	-0.039*** (0.014)
Stream Exits * Number of Groups		0.010*** (0.003)		
Stream Exits * Total Expenditures (\$10,000s)			2.15E-04*** (4.02E-05)	
Stream Exits * Mean Expenditures (\$10,000s)				l.12E-03*** (2.2E-04)
Year FE	Y	Y	Y	Y
State FE	Y	Y	Y	Y
Obs.	129,164	129,164	129,164	129,164

DO - 10 MILES TO EXIT - IV FIRST STAGE

Dep Var.:	Stream	Stream	Stream
	Exits *	Exits *	Exits *
	Number	Total	Mean
	Groups	Expenditures	Expenditures
Stream Exits * Price of Giving	-10.633***	-326.466***	-5.783
	(0.385)	(23.680)	(3.709)
Price of Giving	I.I29 ^{***}	28.565***	-2.895***
	(0.084)	(4.663)	(0.848)
Cragg-Donald Wald F Stat.	2,953.21	692.00	14.68
p – Value	(0.000)	(0.000)	(0.000)

DO - 10 MILES TO EXIT - IV SECOND STAGE

Stream Exits	-0.032*** (0.011)	-0.241*** (0.060)	-0.265*** (0.068)	-1.482** (0.678)
Stream Exits * Number of Groups		0.043*** (0.012)		
Stream Exits * Total Expenditures (\$10,000s)			0.001*** (4.0E-04)	
Stream Exits * Mean Expenditures (\$10,000s)				0.052** (0.025)
Year FE	Y	Y	Y	Y
State FE	Y	Y	Y	Y
Obs.	129,164	129,164	129,164	129,164

MAGNITUDES - 10 MILES TO EXIT

Model:	Number of	Total	Mean
	Groups	Expenditures	Expenditures
OLS			
Spillover (% increase in DO)	1.1%	0.7%	0.5%
As % of annual DO Change	13.2%	8.8%	6.1%
Group Mitigation – Average	62.7%	70.8%	81.9%
Group Mitigation – Marginal	12.2%	0.4%	2.9%
IV			
Spillover (% increase in DO)	3.2%	3.5%	19.4%
As % of annual DO Change	37.9%	41.6%	231%
Group Mitigation – Average	91.9%	94.4%	100%
Group Mitigation – Marginal	17.91%	0.5%	3.6%