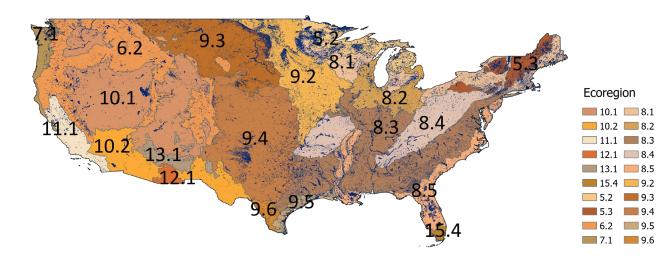
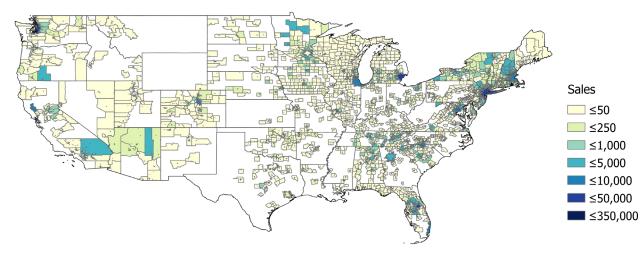
Spatial Heterogeneity in Hedonic Price Effects for Lake Water Quality

KRISTEN SWEDBERG, DIEGO S. CARDOSO, ADRIANA CASTILLO, SALEH MAMUN, KEVIN J. BOYLE, CHRISTOPH NOLTE, MICHAEL PAPENFUS, STEPHEN POLASKY

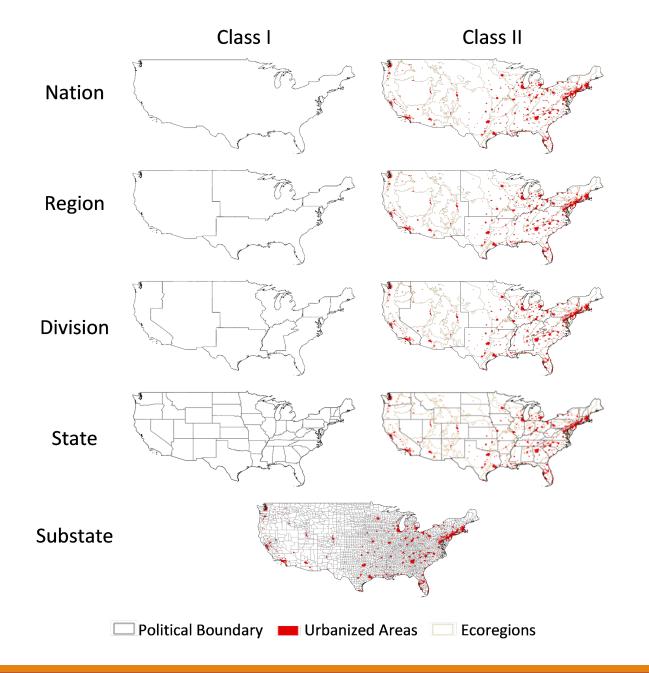
Motivation


- Strong interest in evaluating the effects of lake water quality on housing markets nationally
 - Moore et al. (2020), Zhang et al. (2022)
- But ecological conditions on lakes vary across the country and can shape local policy outcomes
 - Baseline levels of water quality matters
- Homeowner preferences for water quality vary as well
 - Foot test for swimming depends on baseline
 - Wolf and Kemp (2021), Zhang et al. (2022)
- Some variation can be captured through meta-analysis (Guignet et al., 2022)
 - Local studies in the meta-data miss out on large parts of the country with limited data
- Defining market boundaries at larger spatial scales incorporates previously unstudied areas
 - But what are the appropriate market boundaries for environmental amenities?


Research Questions

- 1. How do the effects of lake water quality on property sales vary across the United States?
- 2. Do market boundaries and the spatial scale of the hedonic model impact estimates?
- 3. Are estimates sensitive to other types of investigator decisions?

Key Findings


- Lake water quality elasticities are heterogeneous across political and ecological regions
- Market boundary definitions and spatial scale play a large role in hedonic estimates
- Sensitivity of hedonic estimates varies across regions

Data

- NHD Lakes over 4ha
- Water quality
 - Secchi depth and chl-a
 - From LAGOS-NE and WQP
- Boundaries
 - EPA level II ecoregions
 - 2010 Census counties and urbanized areas
- PLACES curated data
 - ZTRAX property sales (2000-2021)
 - Matched with parcel data, distance to lake, NHGIS, and USGS data
 - Filter for high and medium confidence sales

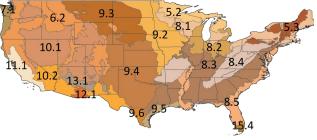
Market Boundaries

- 5 different spatial scales
 - Defined by political boundaries
 - Substate boundaries consist of urbanized areas and counties
- 2 types of market boundary classes
 - I: Political boundaries only
 - II: Political boundaries and ecoregions
- Substate boundaries are a combination of both types of boundary classes

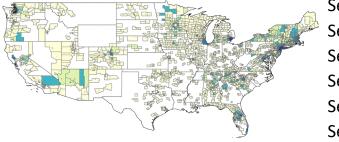
Model Equations

Modelling heterogenous effects for class II market boundaries

 $ln(P_{it}) = \beta_0 + \beta_1 ln(WQ_{it}) + \beta_2 ln(WQ_{it}) * LF_i + \beta_3 ln(WQ_{it}) * ln(Dist_i) + \beta_4 ln(WQ_{it}) * ln(Area_i) + \beta_{Prop} Prop_i + \beta_{Control} Control_i + \gamma_t + \tau_{it} + \epsilon_{it}$

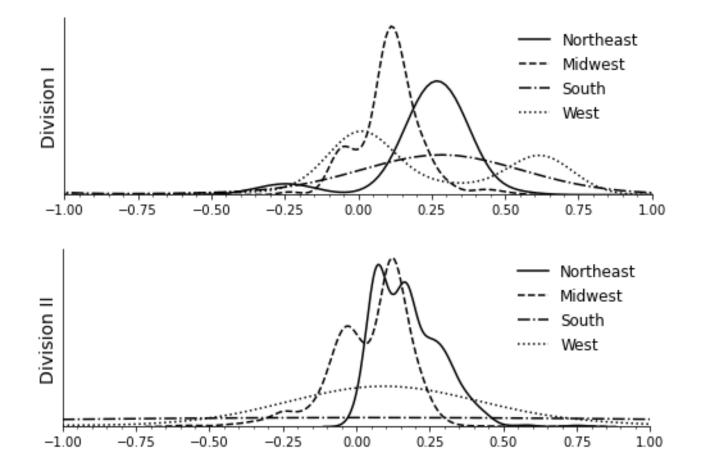

Modelling additional spatial heterogeneity for class I market boundaries

 $ln(P_{it}) = \beta_0 + \beta_1 ln(WQ_{it}) + \beta_2 ln(WQ_{it}) * LF_i + \beta_3 ln(WQ_{it}) * ln(Dist_i) + \beta_4 ln(WQ_{it}) * ln(Area_i)$ $+ \beta_5 ln(WQ_{it}) * U_i + \beta_E ln(WQ_{it}) * E_i + \beta_5 ln(WQ_{it}) * S_i$ $+ \beta_{Prop} Prop_i + \beta_{Control} Control_i + \gamma_t + \tau_{it} + \epsilon_{it}$

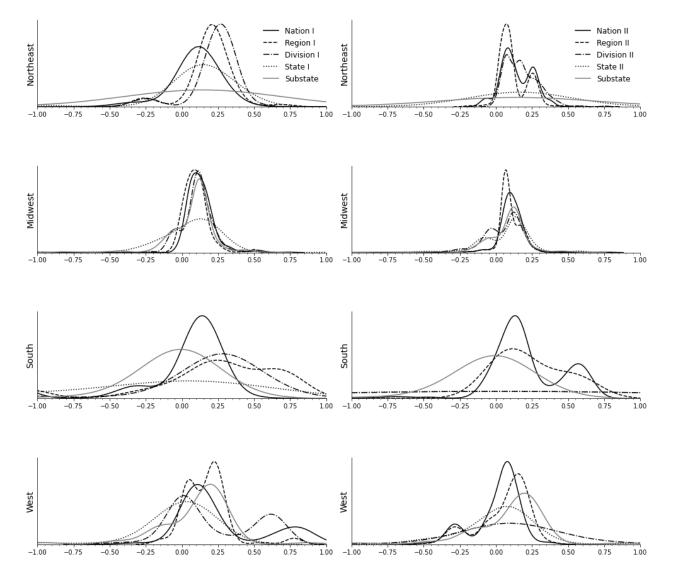

Computing elasticity estimates

 $e\widehat{last}_{it} = \widehat{\beta}_1 + \widehat{\beta}_2 * LF_i + \widehat{\beta}_3 ln(Dist_i) + \widehat{\beta}_4 ln(Area_i) + \widehat{\beta}_5 U_i + \widehat{\beta}_E E_i + \widehat{\beta}_S S_i$

Ecoregions



Sale Density


Nation I Baseline Results								
Parameter	Estimate	Std. Error	Parameter	Estimate	Std. Error	Parameter	Estimate	Std. Error
const	6.832***	(0.213)	Secchi * AL	-0.612	(0.720)	Secchi * OR	-0.556**	(0.206)
Secchi ^{1,2}	0.141	(0.075)	Secchi * AR	-0.535***	(0.102)	Secchi * PA	-2.437***	(0.058)
Secchi * <150 m	0.026**	(0.009)	Secchi * CO	-0.440***	(0.106)	Secchi * RI	-0.101	(0.071)
Secchi * Lake Distance	-0.037***	(0.005)	Secchi * CT	-0.491	(0.317)	Secchi * SC	-1.455**	(0.448)
Secchi * Lake Area	0.026**	(0.010)	Secchi * DE	1.063	(0.585)	Secchi * SD	-1.460***	(0.121)
Secchi * Urban	-0.008	(0.024)	Secchi * FL	-0.007	(0.076)	Secchi * TN	-0.116	(0.129)
Secchi * Ecoregion 5.2	0.041	(0.044)	Secchi * IA	-0.213	(0.141)	Secchi * TX	-2.075***	(0.476)
Secchi * Ecoregion 5.3	0.019	(0.030)	Secchi * IL	-0.068	(0.137)	Secchi * VA	-0.114	(0.086)
Secchi * Ecoregion 6.2	0.524***	(0.100)	Secchi * IN	0.397	(0.856)	Secchi * VT	0.058	(0.377)
Secchi * Ecoregion 7.1	0.475*	(0.205)	Secchi * LA	0.200**	(0.068)	Secchi * WA	-0.486*	(0.211)
Secchi * Ecoregion 8.2	-0.025	(0.123)	Secchi * MA	-0.046	(0.070)	Secchi * WI	0.056	(0.142)
Secchi * Ecoregion 8.3	0.077	(0.063)	Secchi * ME	2.266***	(0.123)	<150 m	0.125***	(0.009)
Secchi * Ecoregion 8.4	-0.015	(0.077)	Secchi * MI	-0.077	(0.079)	Lake Distance	-0.098***	(0.005)
Secchi * Ecoregion 8.5	0.017	(0.054)	Secchi * MN	0.011	(0.056)	Lake Area	-0.001	(0.011)
Secchi * Ecoregion 9.2	0.101	(0.107)	Secchi * NC	-0.155	(0.323)	Median Income	0.140***	(0.014)
Secchi * Ecoregion 9.3	-0.030	(0.088)	Secchi * ND	-0.129	(0.097)	Slope	0.021***	(0.002)
Secchi * Ecoregion 9.4	0.532***	(0.088)	Secchi * NE	-0.016	(0.146)	Elevation	-0.007	(0.027)
Secchi * Ecoregion 10.2	0.396***	(0.099)	Secchi * NH	-0.026	(0.061)	Lot Size	0.104***	(0.004)
Secchi * Ecoregion 11.1	0.718***	(0.099)	Secchi * NJ	0.034	(0.070)	Building Age	-0.118***	(0.003)
Secchi * Ecoregion 13.1	-0.072	(0.062)	Secchi * OH	0.212	(0.320)	Building Size	0.562***	(0.010)
Secchi * Ecoregion 15.4	-0.046	(0.102)	Secchi * OK	-1.244***	(0.092)	Quarter 2	0.045***	(0.002)
						Quarter 3	0.052***	(0.002)
						Quarter 4	0.018***	(0.002)

Notes: N = 587,327 Standard Errors Clustered at Tract Level. *p<.05 **p<.01 ***p<.001

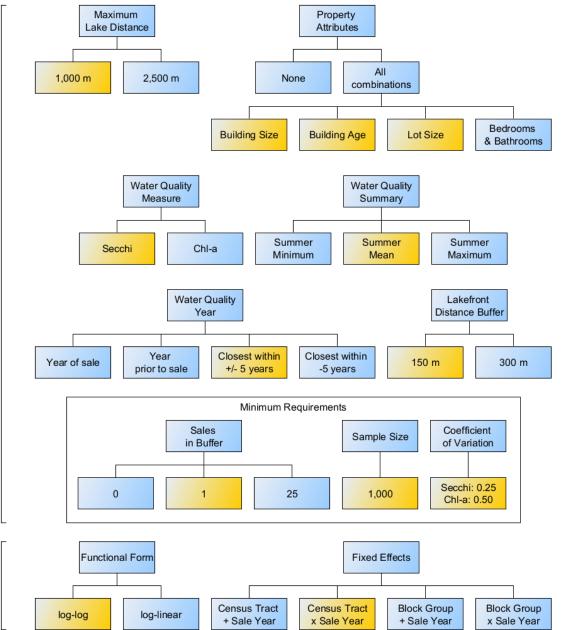
Regional Heterogeneity

- Considering baseline elasticity estimates within 150m from lakefront
- Holding spatial scale constant at the Division level plot distributions by region
- Densities rescaled to 1 for each plot

Variation by Market Boundaries

- Considering baseline elasticity estimates within 150m from lakefront
- Holding each region constant plot distributions by spatial scale
- Densities rescaled to 1 for each plot

Conclusions

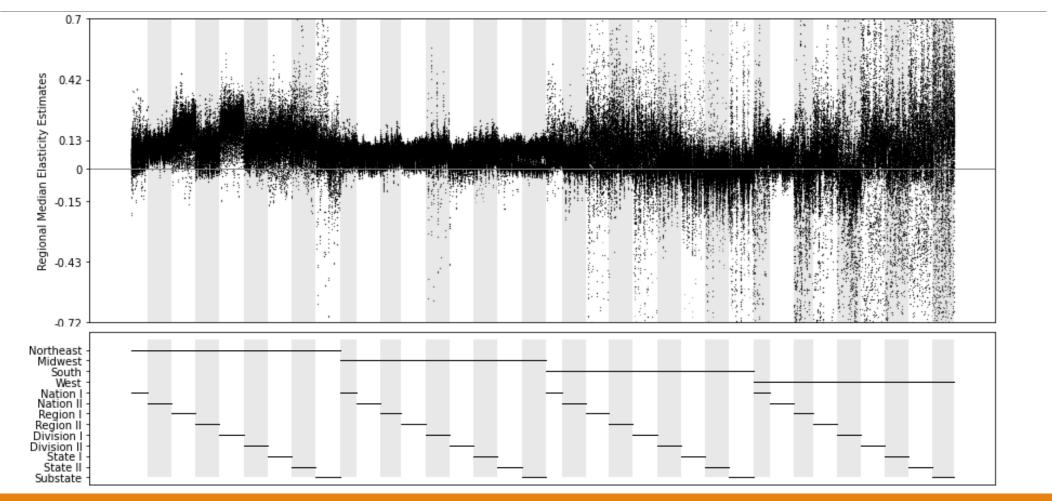

- The effects of lake water quality on sale prices may not be generalizable at a national scale
 - Related to political and ecological boundaries
- Investigators should proceed with care when defining market boundaries for hedonic models
 - No one size fits all approach
 - Need to test the sensitivity of results to different boundaries
- Large and small scale hedonic models are complimentary
 - In the Midwest and Northeast, we can define lake housing market more broadly
 - In the South and the West, case studies may be more appropriate

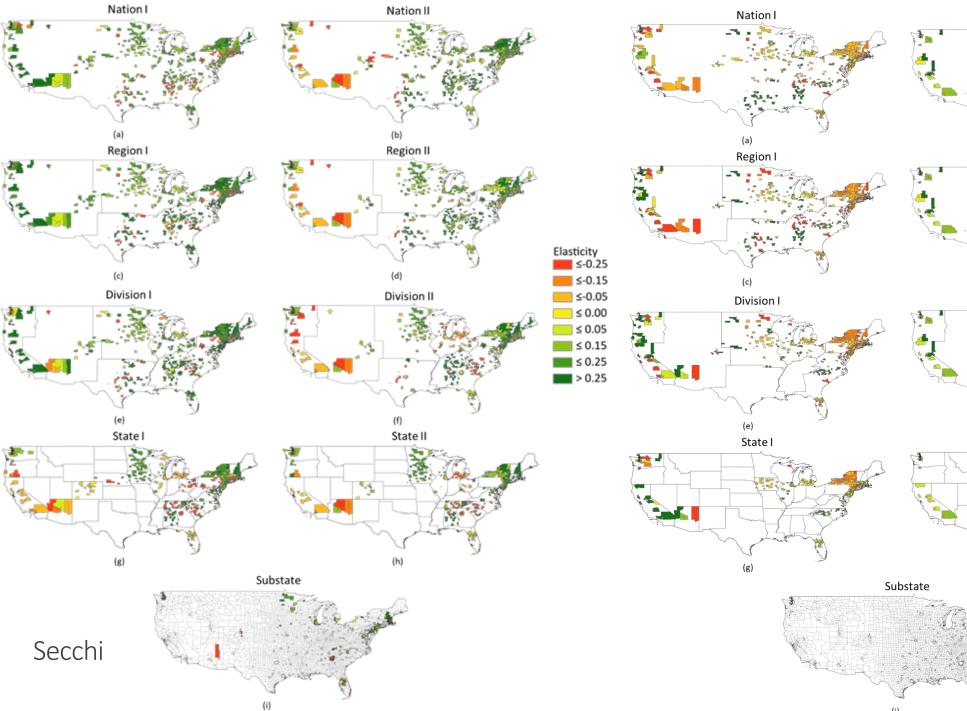
Future Research

- Lots more work to be done!
- Targeted studies in areas with limited data
- Our results can lay the groundwork for future meta-analyses
 - To better understand ecological and geopolitical patterns underlying observed spatial heterogeneity
- Spatially-referenced elasticity estimates can be linked to hydrological models to assess different policy outcomes

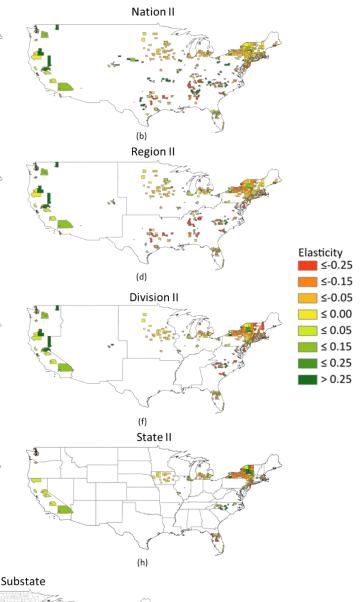
Thank you!

- Kristen Swedberg
- swedkm@vt.edu

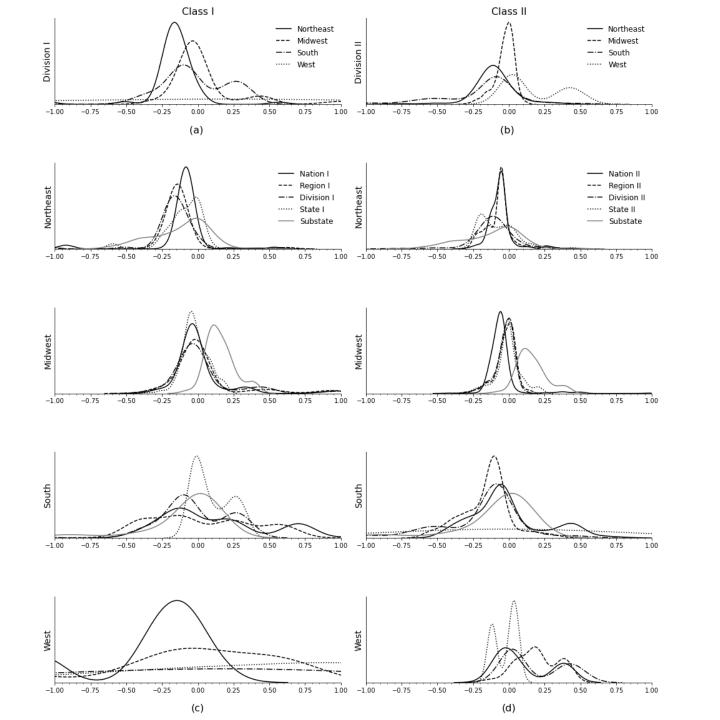



Methodological Combinations

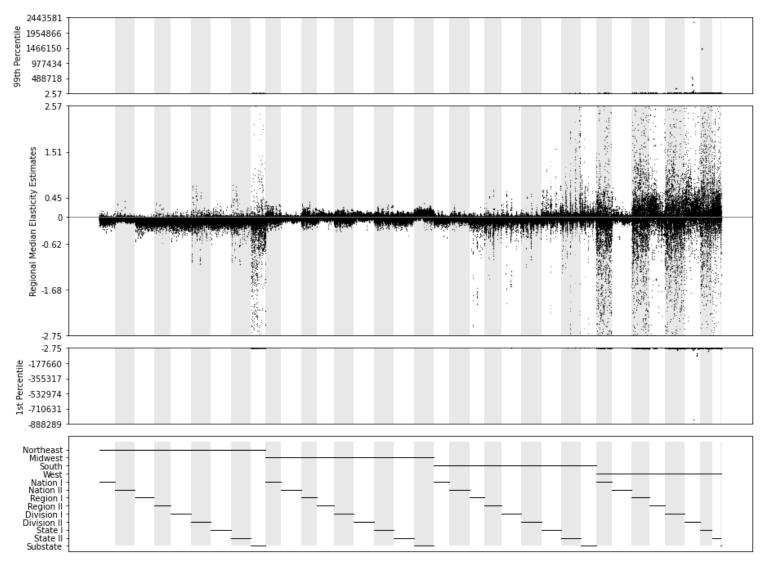
- Consider wide range of sample selection criteria and model specifications
- Baseline highlighted in yellow
- Set minimum sample size and coefficient of variation based on prior literature


Model

Robustness



2



Chl-a

Chl-a Distributions

Chl-a Robustness