Accounting for water in the United States

Social Cost of Water Pollution Workshop September 2022 Ken Bagstad

Acknowledgments

- U.S. Natural Capital Accounting Working Group
 - esp. Carter Ingram & Carl Shapiro
- OSTP-led Policy Working Group on Natural Capital Accounting & Environmental-Economic Statistics

Roadmap

- 1. Natural capital accounting & the U.S. Strategy
- 2. From pilot toward production-grade water accounts
- 3. Insights from ecosystem accounting
- 4. Lessons & needs for economic valuation

1. Natural capital accounting & the U.S. Strategy NATIONAL STRATEGY TO DEVELOP STATISTICS FOR ENVIRONMENTAL-ECONOMIC DECISIONS

A U.S. System of Natural Capital Accounting and Associated Environmental-Economic Statistics

> Office of Science and Technology Policy Office of Management and Budget Department of Commerce

> > AUGUST 18th, 2022

National Strategy on Statistics for Environmental-Economic Decisions

- 2022 Interagency Policy Working Group on Natural Capital Accounting & Environmental-Economic Statistics
- Provides interagency coordination, work planning, budgeting supporting a national strategy
 - Earth Day 2022: Plans to develop national strategy announced
 - 8/18/22: Release of national strategy for public comment
 - Early 2023: Final strategy released
 - Late 2023: First national environmental-economic accounts released
 - Early-mid 2030s: Complete, production-grade environmental-economic accounts regularly produced

https://www.whitehouse.gov/ostp/news-updates/2022/08/18/readout-ostpinitial-engagement-on-developing-natural-capital-accounts/

NATIONAL STRATEGY TO DEVELOP STATISTICS FOR ENVIRONMENTAL-ECONOMIC DECISIONS

A U.S. System of Natural Capital Accounting and Associated Environmental-Economic Statistics

> Office of Science and Technology Policy Office of Management and Budget Department of Commerce

> > AUGUST 18th, 2022

Secretary Gina Raimondo @SecRaimondo

Yesterday, I joined @WHOSTP and @OMBPress to announce the initiation of the first U.S. national system of natural capital accounts and standardized environmental-economic statistics.

@CommerceGov is taking meaningful steps to combat climate change and nature loss. #EarthDay

12:19 PM · Apr 22, 2022 · Twitter Media Studio

		Co-Lead Departments/ Agencies	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036
line aries	Changes in natural capital wealth	BEA, NOAA, DOI, USDA														
Head Summ	Net domestic product inclusive of natural assets	BEA			*											
	• • •															
_	Air and emissions	BEA, EPA														
mental	Water	USGS, EPA, BEA, USDA, NOAA														
nviron ectors	Land	BEA, USDA, DOI, EPA, USFS														
e l E S	Environmental activities & jobs	BEA, BLS, EPA, Census														
Phas	Marine natural capital: fish, minerals and perhaps a few other assets	NOAA, BEA														
a	Minerals & Energy	DOI, BEA, NOAA														
e II nent ors	Forests	USDA, USFS														
Phase nvironn Secto	Urban green space	DOI, USDA, NOAA, USFS														
Ŀ	Pollinators	USDA														
-	Migratory birds, wildlife, and fish	DOI														
inta	Wetlands and peatlands	DOI, NOAA													6	

What water information do we need?

- 1. How much water do we have?
- 2. Who uses it? What value does that use add to our communities & economy?
- 3. How do water & land use impact water quality, and how does that impact other users (including ecosystems)?
- 4. What tradeoffs emerge, and how can we better navigate them?

SEEA-Water System of Environmental-Economic Accounting for Water	Consistent methods	High quality/accuracy	Trusted
	High spatiotemporal resolution (easy to aggregate across scales)	Long time series	Low latency

SEEA Water

- Well established & used system: predates SEEA Central Framework (2007)
- Measures water asset (volume), flows between environment & economy, quality, emissions, valuation (where possible)

International standards for natural capital accounting

https://seea.un.org/

SEEA Central Framework (2012)

- United Nations Statistical Division (UNSD):
 - "an international statistical standard for measuring the environment and its relationship with the economy," which covers:
 - 1. Environmental flows
 - 2. Stocks of environmental assets
 - 3. Economic activity related to the environment

System of Environmental-Economic Accounting 2012

SEEA Ecosystem Accounting (2021)

- Quantify ecosystems as assets
 - Tracking their extent & condition
 - Ecosystem services, in physical & monetary terms

Congruence with economic accounts

- Physical & monetary supply & use tables
- Asset values for balance sheets

1	able 2.1: Sir	mplified str	ucture of th	ie supply ta	ble								
Industries		Indu	stries										
Products	Agriculture, forestry, etc.	Mining and quarrying	Services	Imports	Total								
Agriculture, forestry, etc.													
Ores and minerals, etc.	c	Output by prod	,	Imports by product	Total supply by product								
Services	product by product												
Total	Total output by industry Total imports Total supply												

Table 2.2: Simplified structure of the use table

Industrie	5	Indu	stries										
Products	Agriculture, forestry, etc.	Mining and quarrying		Services	Final consumption	Gross capital formation	Exports	Total					
Agriculture, forestry, etc			-										
Ores and minerals, etc.	Intermediate	e consumption	by product and	d by industry	Final uses b	by category	Total use by product						
Services													
Value added	Value a	added by comp	onent and by i	ndustry			Value added						
Total		Total output	by industry		Total fi	itegory							
	-												

https://unstats.un.org/unsd/ nationalaccount/docs/SUT_I OT_HB_Final_Cover.pdf

Congruence with economic accounts

B. P Withi

> Into t envir

Note:

 Physical & monetary supply & use tables

• Asset values for balance sheets

https://seea.un.org/sites/seea.un.org/fi les/seeawaterwebversion_final_en.pdf Table III.1 Standard physical supply and use tables for water

	A. Physical u	ise table (physical units)			1-3	5-33, 41-43	35	36	37	38, 39, 45-99	Total	Household	ds	Rest of the world	Total
	From the environment	 Total abstraction (= 1.a + 1.b = 1. 1.a. Abstraction for own use 1.b. Abstraction for distribution 1.i. From inland water resources: 	.i + 1.ii)												
				Ind	ustries	(by ISIC	catego	ory)				Dest			
hysical su	pply table (phy	sical units)	1-3	5-33, 41-43	35	36	37	38, 39, 45-99	Total	House	holds	of the world	Tot	al	
n the omy	 4. Supply of wat of which: 4.a. Reused w 4.b. Wastewa 														
he onment	 4.a. Reused water 4.b. Wastewater to sewerage 5. Total returns (= 5.a + 5.b) 5.a. To inland water resources 5.a.1. Surface water 														
	5.a.1. Surface water 5.a.2. Groundwater 5.a.3. Soil water 5.b. To other sources (e.g., sea water)														
	6. Total supply of water (= 4 + 5)														
	7. Consumption	(= 3 - 6)													
Dark grey o	7. Consumption (= 3 - 6)grey cells indicate zero entries by definition.														

Industries (by ISIC category

Congruence with economic accounts

- Physical & monetary supply & use tables
- Asset values for balance sheets

	Units of	Econo	mic units (s	elected)	Ecosystem	n assets (selec	ted types)
	measure	Agri.	Gov.	Households	Forest	Cropland	Grassland
SUPPLY							
ES #1: Biomass provisioning services (rice)	Tonnes					100	
ES #2: Air filtration services (PM2.5)	Tonnes				50		
USE							
ES #1: Biomass provisioning services (rice)	Tonnes	100					
ES #2: Air filtration services (PM2.5)	Tonnes			50			

Table 7.3: Basic Ecosystem services physical supply and use table #2

Note: Grey cells indicate not applicable.

https://seea.un.org/sites/seea.un.org/files/documents/EA/seea_ea_white_cover_final.pdf

"The nation behaves well if it treats the natural resources as assets which it must turn over to the next generation increased, and not impaired, in value."

Theodore Roosevelt, August 1910

"This is a historic step forward towards transforming how we view and value nature. We will no longer be heedlessly allowing environmental destruction and degradation to be considered economic progress." – António Guterres, March 2021 2. From pilot toward productiongrade U.S. water accounts

Data sources: 1st-generation water account (Bagstad et al. 2020)

- Physical supply & use accounts: USGS water use data (reported every 5 years, 1950-2015)*
- Water productivity accounts: Water use + BEA GDP data
- Water quality accounts: USGS water quality data for surface & groundwater (NAWQA)
- Water emissions accounts: EPA Permit Compliance System & Integrated Compliance Information System (PCIS-ICIS) database (water emissions by industry)

U.S. Water accounts (Bagstad et al. 2020)

- Water use, productivity, quality & emissions
- Identified data gaps in comprehensive water accounts for the U.S.
 - Powell Center funding development of monthly water-use data (2022-2023)
- *Potential uses:* supporting water allocation, pricing, etc.

Water accounting tables

1

	11. Agricultu Hunting	ure, Foresti	ry, Fishing	, and		2211. Distrib	Electric Pow ution	er Ger	eration, Tran	smission a	nd 2	2213. Water, Other (Irrigat	Sewage & ion)					Households (Domestic) 45.1 3,255.8 54.4 46.6 54.4 46.6 0.0 0.0 90.7 3,209.2 90.7 3,209.2 90.7 3,209.2 90.0 0.0 0.0 22,952.4 66.6 0.0 0.0 22,952.4 66.6 0.0	
				11. Agriculture	e, Forestry, Fi Hunting	shing, and	21. Mining ^b	221	1. Electric Power G	eneration, Tra	nsmission a	and Distribution	2213. Water (Irr	, Sewage & Othe igation)	er 31-3	3. Manufacturing ^b	713910. Golf Courses and	Households	Total
Year			1	111. Crop Production (Irrigation)	112. Animal Production (Livestock)	1125. Aquaculture ^b		The (Onc	rmoelectric Power e-through cooling)	Thermoelectr (Closed-loop	ic Power cooling)	Hydroelectric (Evaporative Use) ^a	221310 Water supply (Public supply) ^b	221320 Sewa treatment faci (Wastewate	age ilities r) ^b		Country Clubs	(Domestic)	
	A. Water Use																		
	1. Total abstraction			117,018.2	2,093.8	7,450.0	3,99	6.4	126,110.2		5,027.0	14,113.8	38,419.3		N/R	14,784.0	1,445.1	3,255.8	333,713.3
	1.i.1. Surface Water,	, of which is		60,338.5	868.6	5,839.4	1,13	2.2	125,986.1		4,555.4	14,113.8	23,268.4		N/R	12,076.9	754.4	46.6	248,980.2
-	H	resh		60,338.5	868.6	5,833.1	87	6.5	90,621.6		4,085.0	14,113.8	23,264.6		N/R	11,334.0	754.4	46.6	212,136.5
	112 Ground Water	aline		56 670 7	1 225 2	1 610 7	20	1.7	35,304.5		470.5	0.0	15 150 9		N/R	2 707	600.7	2 200 2	30,843./
	r.i.z. Ground water	, of which is		56 679 7	1,225.2	1,610.7	2,00	4.2	124.1		342.5	0.0	14 887 7		N/R	2,707.	690.7	3,209.2	82 394 6
-	S	aline		0.0	0.0	0.0	1,86	0.1	43.4		129.0	0.0	263.1		N/R	42.0	0.0	0.0	2,338.5
2000																			
2000	2. Use of water from	m other econor	mic units	0.0	0.0	0.0		0.0	51.8		112.3	0.0	0.0		N/R	376.2	0.0	22,952.4	23,492.7
2005	Reclaimed waste	water		654.7	0.0	0.0		0.0	8.2		141.2	0.0	331.0		N/R	92.9	266.6	If d ps Households (Domestic) 45.1 3,255.8 54.4 46.6 54.4 46.6 54.4 46.6 90.7 3,209.2 90.7 3,209.2 0.0 22,952.4 66.6 0.0 0 1,880,110 8 323,917 0 1,880,110	1,494.7
	1						la di		hu NAICE 2017							I	1		
				1			Indu	stries (by NAICS 2017	category)				1	1		요	-	8
	211. Oil & Gas Extraction	212. Mining (Except Oil & Gas)	2211. Electric Power Generation	221310. Water supply & irrigation systems	Treatment Facilities	221320. Sewage	Manufacturing 311. Food	312. Beverage & Tobacco Product	321. Wood Product Manufacturing	322. Paper Manufacturing	325. Chemical Manufacturing	326. Plastics & Rubber Products Manufacturing	488. Support Activities for Transportation	493. Warehousing & Storage	962. waste Management & Remediation Services	721. Accommodation	her industries*		as other industries
Nitrogen	1,959	176	30,800	4,0	625 1,7	07,044	9,076	224	2,305	4,477	11,3	90 690	2,745	276	41,45	7 1,713	61,160	1,880,11	6 3.39
Phosphor	us 1,813	1,080	3,518		278 2	29,370	46,984	483	67	3,062	4,4	83 22,353	3 57	1	5	3 7,846	2,468	323,91	7 0.89
Organic		-	F						1 1		,							,	
enrichme	nt 17,864	1,528	7,921	1,8	878 7	94,385	126,283	58,362	63,112	221,832	31,1	90 32,722	2 32,693	102,963	89,41	.3 7,771	213,202	1,803,11	7 11.89
Solids	31,839	47,734	815,669	1,413.	230 2.4	02,702	256,620	4,365	189,360	319,346	291.2	93 937.321	1 268,139	5,059	305,54	9 15,089	3,023,845**	10,327.16	0 29.39
Metals	84.022	94,431	53.179	15.175.	582 4	86.175	9.731	. 82	361	1.338	4.0	25 8	3 97.101	73	60.81	.6 21	184.521	16.251.46	7 1.19

Quantifying flows of water through the

economy

Understanding economic dependencies on water & impacts to water resources

Potential impacts of water use on water quality

Potential impacts of water use on water quality

Next steps: From Research toward Production-grade water accounts

Question	Account	Planned update	Agency	Timeline
How much water do we have?	Asset account	Water budget pilot models	USGS	2023+
Who uses it?	Supply & use account	Next-generation water use models	USGS	2023-2026+
What value does it add?	Productivity account	Updated water use + GDP data	USGS & BEA	2023-2026+
How do water & land use affect water quality?	Emissions account	StEWI tool (point source emissions); Modeling nonpoint source emissions	US EPA & USGS	Now; 2023- 2024+
How does water quality affect other users?	Quality account	Improved surface & groundwater monitoring & modeling	USGS & US EPA	2023-2026+

Interagency collaboration for water accounting

Figure 5. Agencies involved in the Water account.

Using water accounts information

Table S3.2: Types of water policy or management controls as a function of information needed: water use (WU), water emissions (WE), water productivity (WP), other resource use (OU), other economic productivity (OEP), or all of the above (ALL).

	In	dividual	Private	Community	Ρu	ıblic	Loca	al	Region	al	National	l			
			Company	group	Ut	ility	Gov	rt.	Govt.		Govt.				
Water permits	W	νU	ALL	ALL	W	U	ALL		ALL		ALL				
Water pricing			ALL	ALL	AL	L (but	ALL		ALL		ALL				
or subsidies					primarily										
		Table S3.	3. Examples	of policy or mana	icy or management drivers			d resp	onsible p	bartie	es or levels) vs. In	formation need	ded and control tools	
Economic	W Water Use		Water		Wate	r	Wa	ter Use &	Othe	Resource Use	Other Economic	All of the Above			
viability/risk	w					Emissions	5	Produ	uctivity	Wa	ter			Productivity	
water		National L	aw.	Permit controls bui	ilt	Emission		Notu	sually	Pro Not	ductivity	State	county or local	Considered by default	Not usually considered in
assessments	ssessments	Endangere	ed Species	infrastructure		controls		consi	dered.	con	isidered.	contr	ols on biological	but often without	an integrated way. Could
Watar	ssessments /ater W	Act (ESA) – Federal c		controls, or other		(sometim	es) –	Could	l inform	Cou	uld inform	resou	rces use,	attached "externalities"	inform ESA anticipatory
water	VV	Agency (U.	.S. Fish and	ools – State, county, St		State, cou	inty	ESA		ESA	1	and/o	or impacts of	(such as species loss).	management.
distribution &		Wildlife Se	ervice in the	or local agency.		of local		antici	patory	ant	icipatory .	other	resource uses	Could inform ESA	
		0.5.)				agency.		mana	gement.	ma	nagement.	energ	mineral or v extraction)	anticipatory	
Ragstad et al		Legal Com	pact:	Permit controls, bui	ilt	Considere	ed	Not u	sually	Not	t usually	State	, county or local	Considered by default,	Not usually considered in
		interstate	or trans-	infrastructure		occasiona	ally.	consi	dered.	con	isidered.	contr	ols on natural	but often without	an integrated way. Could
2020,		national bo	oundary	controls, or other				Could	l inform	ΟΟ Ο	uld inform	resou	rce use, and/or	attached	inform anticipatory
Sunnlemental		water allo	cation –	tools – State, count	у,			antici	patory	ant	icipatory	impa	cts use.	"externalities". Could	management or trade-off
		Transboun	idary or	or local agency.				mana	gement	ma	nagement			inform anticipatory	decisions.
Information		Federal or	Interstate					or tra	de-off	ort	rade-off			management or trade-	
		Organizati	on			- · ·		decisi	ions.	dec	isions.			off decisions.	
		National La	aw: Clean	Permit controls, bu	ilt	Emission		Not u	sually	Not	t usually	State	county or local	Considered by default,	Not usually considered in
	Water Act infrastructure controls-			considered.		con	isidered.	contr	ois on natural	but often without	an integrated way. Could				

3. Insights from ecosystem accounting

Water in the ecosystem accounts

- Final services:
 - Water supply
 - Sediment regulation
 - Water purification retention & breakdown of nutrients & other pollutants
 - Water flow regulation baseflow & peak flows
 - Flood control services coastal & riverine
- Intermediate services water for:
 - Crop provisioning
 - Livestock provisioning
 - Aquaculture
 - Wild fish
 - Recreation-related services

System of Environmental-Economic Accounting Ecosystem Accounting

Ecosystem accounts, SE U.S. (Warnell et al. 2020)

										Ec	osyster	m Types	(Land Co	over)						
				Offshore	Open Water - non- freshwater	Open Water - freshwater	Developed - Open	Developed - Low	Developed - Medium	Developed - High	Barren	Deciduous Forest	Evergreen Forest	Mixed Forest	Shrub/Scrub	Grassland/Herbaceou s	Pasture/Hay	Cultivated Crops	Woody Wetlands	Emergent Herbaceous Wetlands
	Area of pollinato	or habitat in	2001									5,471	2,516	1,336	1,290	165			7,061	172
	flight range of	pollinator-	2006									4,152	2,125	1,459	2,191	423			11,539	371
, no	dependent crop	ps (sq km)	2011									53,679	30,441	6,670	18,388	9,314			43,104	3,354
nati	Area of pollinator	r-dependent	2001															11,182		
	crops in flight	range of	2006															21,581		
ă p	pollinator habit	tat (sq km)	2011															65,818		
Vilc	Detio of collingto		2001															1.66		
-	Ratio of pollinato	or habitat to	2006															1.05		
	bolinator deber	Ident crobs	2011															2.55		
E	Area of purifying	and cover	2001									31,542	20,238	6,959		5,385			25,463	3,379
atic	types between N	VPS sources	2006									31,453	19,780	6.678		5,997			25,427	3.504
ific	and waterway	rs (sq km)	2011									31.005	19 330	6 353		6 1 9 2			25 151	3 789
bn	% of flow path by	tween NDS	2001			30.6%						52,005	20,000	0,000		0,202			20,202	5,705
ter	sources and wa	terways in	2001			20.4%														
Ň	purifying land o	over types	2000			20.4%														
	P 7		2011			23.370														
- I	Ried enocioe rich	norr lout of	2001	158	1	57	156	149				160	160				160	160	158	148
Bird	160 species non	ness (out or nodeled)	2006	158	1	57	156	150				160	160		145		160	160	159	150
ojo	200 species ii	nouclea _j	2011	158	1	57	156	150				160	160		144		160	160	159	147
			2010									2 42								
	Wind Speed	d (m/s)	2015									2.54								
		-	2010									17.06	5							
	Temperatu	re (°C)	2015									17.38	3							
			2010									962								
	Precipitation	(mm/yr)	2015									1344	ļ							
E		0	2010									98,69	0							
atic			2015									92,58	3							
												438 13	0							
ific		NO ₂	2010									430,13	99							
purific		NO ₂	2010 2015									494,26	58							
Air purific	Pollution	NO ₂	2010 2015 2010									494,26	58 27							
Air purific	Pollution removal	NO ₂ O ₃	2010 2015 2010 2015									494,26 4,531,9 4,258,8	27 78							

Ecosystem accounts support fine-grained analysis

- Atlanta MSA (right)
- New county-level GDP estimates from BEA enable finer scale analysis
- Ability to extract results for any geography e.g., watersheds, public lands

r	nts Ied		Atlanta city limits Decline in % of flowpa water-purifying land c More than 8% 6% to 8%	ath in cover types
	Account	Metric	% change, 2001-	
			2011	
	Land accounts ^a	Developed land cover	17.2%	
		Agricultural land cover	-6.3%	
		Other land cover	-4.0%	
	Water accounts	Total water use (million gallons/day, 2000- 2010) ^b	-57.8%	
		Water productivity (\$/100 gallons water use, 2000-2010)°	153.3%	
		Water-quality monitoring declines (% of sites monitored, 2002-2012) ^d		
	Ecosystem accounts ^e	% of flowpath in purifying land cover	-18.2%	
		Mean annual concentration, CO (2010-2015)	14.8%	
		Mean annual concentration, NO ₂ (2010-2015)	-25.0%	60 Miles
		Mean annual concentration, O3 (2010-2015)	-3.8%	
		Mean annual concentration, PM10 (2010-2015)	-32.5%	
		Mean annual concentration, PM2.5 (2010-2015)	-1.8% -	
		Mean annual concentration, SO ₂ (2010-2015)	-42.7%	
		Mean annual removal rates, CO (2010-2015)	22.5%	
		Mean annual removal rates, NO2 (2010-2015)	18.9%	
		Mean annual removal rates, O₃ (2010-2015)	3.4%	
		Mean annual removal rates, PM10 (2010-2015)	-20.3%	
		Mean annual removal rates, PM2.5 (2010-2015)	0.3%	
		Mean annual removal rates, SO2 (2010-2015)	-46.6%	
		Total precipitation (mm/yr)	39%	
		Recreational birding-days	209.6%	
	Economic accounts ^f	GDP, all industries	8.8%	
	Population (2000-201	D)g	24.0%	

Urban ecosystem accounts (Heris et al. 2021)

Rainfall interception, urban heat island mitigation for 768 cities >50,000 population

									Ecosyst	em Types (I	and cover)						
Ecosystem Accounting Area	Service Type	Year	Open Water	Developed - Open	Developed - Low	Developed - Medium	Developed - High	Barren	Deciduous Forest	Evergreen Forest	Scrub/Shrub	Grassland/Herbaceou s	Pasture/Hay	Cultivated Crops	Woody Wetlands	Emergent Herbaceous Wetlands	Total
736 cities with population >=50k and		2011	0.0	150.2	238.4	87.0	6.3	0.1	14.8	12.4	3.0 3.2	2.4	1.2	0.4	3.1	0.3	522.7
valid regression results		2016	0.0	150.5	247.7	91.8	6.5	0.2	12.4	12.2	7.5 2.8	1.7	1.7	0.5	2.9	0.4	538.6
Cities of Colorado (17 with	Energy Savings (Million \$)	2011	0.0	2.9	12.5	3.9	0.1	0.0	0.1	0.1	0.0 0.2	0.0	0.0	0.0	0.1	0.0	20.0
population >=50k)		2016	0.0	2.9	12.7	3.9	0.1	0.0	0.1	0.2	0.0 0.3	0.0	0.0	0.0	0.1	0.0	20.3
Denver, CO		2011	0.0	1.0	3.3	0.8	0.0	0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	5.1
120 citize with CSOs with population		2010	0.0	0.9	50.7	16.0	1.2	0.0	155.7	20.1	0.0 0.0	0.0	0.0	0.0	20.7	1.6	422.6
>=50k	Avoided Runoff Value (Million \$	2011	0.7	83.7	59.7	17.4	1.2	0.4	149.4	29.1	1.4 2.0	2.2	8.7	0.9	21.6	1.0	433.0
		2010	0.0	03.7	33.0	17.4	4.4	0.4	Ec	onomic u	nits	2+1	0.2	0.9	21.0	1.0	42.4.1
Ecosystem Accounting Are	a Service Type	Year	NAICS 11 Livestock	Wastewater treatment 221320	NAICS 31-33 Manufacturing	MAICE AA.45 Retail	NAICS 44-45 KETAI	NAICS 48-49 Transport warehousing	NAICS 51-56 Offices	NAICS 61 Educational services	NAICS 62 Health care & social assistance	NAICS 71 Entertainment	NAICS 92 Government	Households (No NAICS	Code)	No NAICS equivalent	Total
736 cities with population >=5	j0k	2011	0.0	0.0) 1.	3	2.1	11.3	2.9	3.5	0.9	0.2	0.	9 49	7.7	1.8	522.7
and valid regression results		2016	0.0	0.0	1.	.3	2.1	11.2	2.9	3.5	1.0	0.2	0.	9 51	.3.7	1.8	538.6
Cities of Colorado (17 with	Energy Savings	2011	0.0	0.0) 0./	0	0.1	0.0	1.7	0.1	0.0	0.0	0.	1 1	7.6	0.3	20.0
population >=50k)	(Million \$)	2016	0.0	0.0	0.0	0	0.1	0.0	1.7	0.1	. 0.0	0.0	0.	1 1	.7.9	0.3	20.3
Denver CO		2011	0.0	0.0) 0.	0	0.0	0.0	0.6	0.0	0.0	0.0	0.	1	4.3	0.1	5.1
Deriver, CO		2016	0.0	0.0	0.0	0	0.0	0.0	0.5	0.0	0.0	0.0	0.	1	4.3	0.1	5.0
130 cities with CSOs with	Avoided Runoff	2011	0.0	433.6	i 0./	0	0.0	0.0	0.0	0.0	0.0	0.0	0.	0	0.0	0.0	433.6
population >=50k	Value (Million \$)	2016	0.0	421 6		0	0.0	0.0	0.0	0.0	0.0	0.0	0	0	0.0	0.0	474 7

Urban rainfall interception account: assumptions

- Tree cover, LAI, rain events data
- 25.5% of urban intercepted rainfall would otherwise fall on impervious surface (Nowak & Greenfield 2012)
- Replacement of intercepted rainfall in cities with CSOs at \$2.58/m³ (Hirabayashi 2013)
- 2.63 billion m³ intercepted in 2016, ca. 27% in cities with CSOs, valued at \$425 million

Water in the ecosystem accounts: Next steps

- 1. Best-available water models + best-available valuation data
 - Multiple water-based ecosystem services (water supply, regulation, water quality, flood regulation...)
- 2. Distinguish beneficiaries (not always easy)
- 3. Public code repositories
 - Open code that can be reviewed & improved upon by the community
 - Open data BUT simultaneous ability to keep private, as needed, to meet privacy needs of statistical community
 - Capable of being re-run to update time series

4. Lessons & needs for economic valuation

Valuation: Challenges

National scale

Without

 oversimplifying
 (ecological,
 hydrologic,
 socioeconomic
 heterogeneity)

 Consistent with SNA (i.e., exchange values vs. welfare)

nature

Explore content × About the journal × Publish with us ×
Subscribe

nature > correspondence > article

CORRESPONDENCE 18 May 2021

Statistics: unify ecosystems

Statistics: unify ecosystems valuation

Nils Brown , Aldo Femia , Dennis Fixler 🗠 , Ole Gravgård Pedersen , Sven C. Kaumanns , Gian Paolo Oneto , Simon Schürz , Francesco N. Tubiello & Scott Wentland

Valuation: Challenges

- 1. (A)typical challenges? problems with WTP, resource rent, avoided/replacement costs OK with usual caveats
- 2. Benefit function transfer potentially, but be careful, design & test transfer functions with eye toward SNA compliance
- 3. SCC admissible as a valuation method "when derived from models that are consistent with the exchange value concept, i.e., limited to assessment the effects on measures of output" (§ 9.32);
 - 1. Follow same approach to apply social cost of water pollution to value ecosystem filtration of water pollutants as an ecosystem service

Valuation: Capital theory-consistent approach

Fenichel et al. 2016, KS groundwater example

State & local water accounting: O'ahu example

State & local water accounting: O'ahu example

- Relevant for many state agencies (e.g., agriculture, environment, economic development, tourism) & policy initiatives
- What's needed?
 - Ability to do forward-looking policy analysis
 - Champions within state government who understand & can use NCA

Forward-looking analysis: Integrated Economic-Ecological Model (IEEM)

- Computable general equilibrium (CGE) models evaluate fiscal/trade/agricultural policy effects on income, jobs, trade balances, etc.
- Integrate with NCA to evaluate ecosystem service changes & feedbacks to the economy
 - Soil erosion, fisheries, pollinators, timber, natural hazards

Forward-looking analysis: Rwanda

 Example: development scenario effects on Rwanda's economy & ecosystem services (Banerjee et al. 2020)

- IDB has extended to 21 Latin American nations
- Comparable global approaches using GTAP (World Bank 2021)

			Difference between BASE in 2015 and 2035	Percent difference between scenario and BASE in 2035						
			BASE	FOR1	FOR2	FUEL	IRRIG	FERT	COMBI1	COMBI2
0	Macroeconomic indicators (IEEM)	Absorption	329.3	-0.1	0.2	1.2	0.5	6.7	8.4	8.4
		Private consumption	311.9	0.0	0.3	1.9	0.5	8.2	10.7	10.7
		Fixed investment	350.5	-0.2	0.1	0.1	0.5	6.4	6.8	6.8
		Exports	427.3	1.3	0.9	3.1	0.8	11.0	16.4	16.4
		Imports	361.2	0.2	0.2	0.9	0.1	4.4	5.7	5.7
		GDP	332.7	0.1	0.3	1.6	0.6	8.1	10.5	10.5
		Genuine savings	364.9	-0.5	0.2	0.4	1.1	10.8	11.6	11.6
		Indirect tax income	317.0	0.0	0.3	1.2	0.5	7.9	9.8	9.8
		Real exchange rate	-1.2	-0.1	0.4	0.8	1.2	7.0	8.7	8.7
		Wages	113.8	-1.5	-0.1	-0.6	0.6	11.0	9.3	9.3
		Unemployment*	-48.6	2.2	0.3	1.3	-0.5	-8.9	-6.2	-6.2
		Poverty*	-79.4	1.2	-0.2	0.0	-1.1	-17.5	-17.4	-17.4
		Agricultural activity	178.6	-1.6	0.1	0.2	1.6	23.6	23.5	23.5
		Livestock activity	166.2	-1.6	0.1	0.1	0.7	8.7	7.7	7.7
		Forestry activity	394.8	2.6	2.2	-3.3	0.2	2.9	2.2	2.2
		Manufacturing activity	353.8	0.4	0.5	1.6	0.5	9.4	11.9	11.9
		Services activity	401.0	0.3	0.3	0.7	0.5	4.8	6.4	6.4
	SEEA Central	Agricultural land use	0.9	-2.0	0.0	0.0	-0.1	-0.8	-2.8	-2.8
	Framework: Land	Livestock land use	2.1	-1.9	0.0	0.0	0.7	8.6	7.1	7.1
	& water-use	Forestry land use	7.7	53.0	53.0	0.0	0.0	0.0	53.0	53.0
	change	Water use	223.6	-0.4	0.5	-0.5	1.1	15.7	15.6	15.6
		Carbon storage	-0.3	3.3	2.8	0.0	0.0	0.0	3.0	3.7
	Ecosystem services	Annual water yield	0.7	-1.8	-1.7	0.0	0.0	-0.1	-1.3	-1.7
		Quick flow	1.1	-2.9	-2.1	0.0	0.0	0.0	-2.5	-3.8
		Local recharge	-0.8	0.9	0.6	0.0	0.0	0.0	0.9	1.8
		Sediment export*	-20.9	0.2	0.1	0.0	0.0	0.0	0.2	0.2
		Nitrogen export*	0.0	-3.4	-2.5	0.0	0.0	47.1	42.4	44.9
		Phosphorus export*	-2.1	-3.1	-2.2	0.0	0.0	49.7	45.2	50.1

Lessons learned from NCA in the U.S. & Europe (Bagstad et al. 2021)

- 1. Coordination (U.S. statistical & science agencies are fragmented)
- Develop demand among all user groups (Federal agencies, states, private sector – Ingram et al. 2022)
- 3. Technical paths forward to move from pilot to production accounts
- 4. Non-Federal partners can help substantially with #2 & 3

https://www.sciencedirect.com/journal/ecosystemservices/special-issue/10RZK17R0JP

Getting involved

- 1. Read & provide comment on the U.S. NCA strategy (through Oct. 21)
 - 1. https://www.federalregister.gov/documents/2022/08/22/2022-17993/request-forinformation-to-support-the-development-of-a-strategic-plan-on-statistics-for
- 2. Agency scientists & staff: build relationships with agencies & offices planning next-generation accounts for water
- 3. Academic scientists
 - 1. Develop & test regional, state, local-level accounts (incl. translation of national NCA into locally relevant accounts)
 - 2. Research needed methods/applications for next-generation accounts, incl. valuation
- 4. All: Work with decision makers at all levels to make NCA an indispensable tool for environmental-economic decision making
 - 1. Partner with decision makers; cut through the jargon to understand NCA & why it matters
 - 2. Role for professional societies?

Thanks! kjbagstad@usgs.gov